Protective Effects of Olive Oil Components Against Hydrogen Peroxide-Induced DNA Damage

Author(s):  
Alexandra Barbouti ◽  
Evangelos Briasoulis ◽  
Dimitrios Galaris
2014 ◽  
Vol 37 (4) ◽  
pp. 427-432 ◽  
Author(s):  
Khadijeh Jamialahmadi ◽  
Fatemeh Soltani ◽  
Maryam Nabavi fard ◽  
Javad Behravan ◽  
Fatemeh Mosaffa

2021 ◽  
Vol 71 (1) ◽  
pp. 131-141
Author(s):  
Nataša Zorić ◽  
Nevenka Kopjar ◽  
Jadranka Vuković Rodriguez ◽  
Siniša Tomić ◽  
Ivan Kosalec

AbstractThis study investigates antioxidant capacity and protective effects of phenolic compounds oleuropein (OLP) and hydroxytyrosol (HT), present in olive oil and olive leaves, against H2O2-induced DNA damage in human peripheral lymphocytes. Antioxidant potency was determined using the measurement of radical-scavenging activity (ABTS∙+ assay), ferric reducing power (FRAP assay) and cupric reducing antioxidant capacity (CUPRAC assay). Both substances were found to be potent antioxidant agents due to their free radical-scavenging activities. Antigenotoxic effects of oleuropein and hydroxytyrosol against H2O2-induced damage in human lymphocytes were evaluated in vitro by alkaline comet assay. At tested concentrations (1, 5, 10 µmol L−1), oleuropein and hydroxytyrosol did not induce a significant increase of primary DNA damage in comparison with the negative control. Pretreatment of human lymphocytes with each of the substances for 120 min produced a dose-dependent reduction of primary DNA damage in the tested cell type. Hydroxytyrosol showed a better protective effect against H2O2-induced DNA breaks than oleuropein which could be associated with their free radical-scavenging efficacy.


2014 ◽  
Vol 52 (6) ◽  
pp. 782-788 ◽  
Author(s):  
Ayumi Yamamoto ◽  
Kana Nakashima ◽  
Saori Kawamorita ◽  
Atena Sugiyama ◽  
Masanori Miura ◽  
...  

2004 ◽  
Vol 9 (2) ◽  
pp. 150-155 ◽  
Author(s):  
Chi-Sung Chun ◽  
Ji-Hyun Kim ◽  
Hyun-Ae Lim ◽  
Ho-Yong Sohn ◽  
Kun-Ho Son ◽  
...  

Genetics ◽  
1999 ◽  
Vol 151 (2) ◽  
pp. 439-446 ◽  
Author(s):  
Masaaki Onda ◽  
Katsuhiro Hanada ◽  
Hirokazu Kawachi ◽  
Hideo Ikeda

Abstract DNA damage by oxidative stress is one of the causes of mutagenesis. However, whether or not DNA damage induces illegitimate recombination has not been determined. To study the effect of oxidative stress on illegitimate recombination, we examined the frequency of λbio transducing phage in the presence of hydrogen peroxide and found that this reagent enhances illegitimate recombination. To clarify the types of illegitimate recombination, we examined the effect of mutations in mutM and related genes on the process. The frequency of λbio transducing phage was 5- to 12-fold higher in the mutM mutant than in the wild type, while the frequency in the mutY and mutT mutants was comparable to that of the wild type. Because 7,8-dihydro-8-oxoguanine (8-oxoG) and formamido pyrimidine (Fapy) lesions can be removed from DNA by MutM protein, these lesions are thought to induce illegitimate recombination. Analysis of recombination junctions showed that the recombination at Hotspot I accounts for 22 or 4% of total λbio transducing phages in the wild type or in the mutM mutant, respectively. The preferential increase of recombination at nonhotspot sites with hydrogen peroxide in the mutM mutant was discussed on the basis of a new model, in which 8-oxoG and/or Fapy residues may introduce double-strand breaks into DNA.


Sign in / Sign up

Export Citation Format

Share Document