The Impact of Processing and Storage on the (Poly)Phenolic Fraction of Pomegranate (Punica granatum L.) Juices

Author(s):  
Pedro Mena ◽  
Nuria Martí ◽  
Cristina García-Viguera
2011 ◽  
Vol 233 (5) ◽  
pp. 797-816 ◽  
Author(s):  
Ulrike A. Fischer ◽  
Judith S. Dettmann ◽  
Reinhold Carle ◽  
Dietmar R. Kammerer

Author(s):  
Naureen Naqvi ◽  
Sabih Ur Rehman ◽  
Zahidul Islam

Recent technological advancements have given rise to the concept of hyper-connected smart cities being adopted around the world. These cities aspire to achieve better outcomes for citizens by improving the quality of service delivery, information sharing, and creating a sustainable environment. A smart city comprises of a network of interconnected devices also known as IoT (Internet of Things), which captures data and transmits it to a platform for analysis. This data covers a variety of information produced in large volumes also known as Big Data. From data capture to processing and storage, there are several stages where a breach in security and privacy could result in catastrophic impacts. Presently there is a gap in the centralization of knowledge to implement smart city services with a secure architecture. To bridge this gap, we present a framework that highlights challenges within the smart city applications and synthesizes the techniques feasible to solve them. Additionally, we analyze the impact of a potential breach on smart city applications and state-of-the-art architectures available. Furthermore, we identify the stakeholders who may have an interest in learning about the relationships between the significant aspects of a smart city. We demonstrate these relationships through force-directed network diagrams. They will help raise the awareness amongst the stakeholders for planning the development of a smart city. To complement our framework, we designed web-based interactive resources that are available from http://ausdigitech.com/smartcity/.


Author(s):  
Christopher R. Hannemann ◽  
Van P. Carey ◽  
Amip J. Shah ◽  
Chandrakant Patel

As the use of information technology becomes more ubiquitous, the need for data processing and storage capabilities increases. This results in the construction and operation of large data centers—facilities that house thousands of servers and serve as the backbone for all types of computational processes. Unfortunately, as processing power and storage capacity increases, so does the corresponding power and cooling requirements of the data centers. Several studies have examined the efficiency of data centers by focusing on server and cooling power inputs, but this fails to capture the data center’s entire impact. To accomplish this, the use of a lifetime exergy (available energy) analysis is proposed. This study first details the development of a lifetime exergy consumption model designed specifically for data center analysis. To create a database of computer components, a disassembly analysis was performed, and the results are detailed. By combining the disassembly analysis of a server with the aggregation of energy and material data, a more rigorous and useful assessment of the server’s overall impact is demonstrated. The operation of the lifetime exergy consumption model is demonstrated by case studies examining the effects of variance in transportation and cooling strategies. The importance of transportation modes and material mass, which are greatly affected by supply chain parameters, is shown. The impact of static and dynamic cooling within data centers is also demonstrated.


Energies ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 8264
Author(s):  
Paweł Dymora ◽  
Mirosław Mazurek ◽  
Krzysztof Smalara

This paper presents the essence of IoT (Internet of Things) works and design challenges, discusses its principles of operation, and presents IoT development concepts. WSN (Wireless Sensor Network) was characterized in detail as an essential component of IoT infrastructure. The various faults that can occur at all levels of the IoT architecture, such as sensor nodes, actuators, network links, as well as processing and storage components clearly demonstrate that fault-tolerance (FT) has become a key issue for IoT systems. A properly applied routing algorithm has a direct impact on the power consumption of sensors, which in extreme cases is the reason why nodes shut down due to battery degradation. To study the fault tolerance of IoT infrastructure, a ZigBee network topology was created, and various node failure scenarios were simulated. Furthermore, the results presented showed the impact and importance of choosing the right routing scheme, based on the correlation of throughput to the number of rejected packets, as well as the proportionality of the value of management traffic to the other including the ratio of rejected packets.


Sign in / Sign up

Export Citation Format

Share Document