The Earth System and Climate Science: Understanding a Very Complex Entity

2019 ◽  
pp. 35-41
Author(s):  
Hans Joachim Schellnhuber ◽  
Maria A. Martin
Eos ◽  
2009 ◽  
Vol 90 (2) ◽  
pp. 15-15 ◽  
Author(s):  
Motoyoshi Ikeda ◽  
Ralf Greve ◽  
Toshika Hara ◽  
Yutaka W. Watanabe ◽  
Atsumu Ohmura ◽  
...  

2016 ◽  
Vol 7 (1) ◽  
pp. 21-50 ◽  
Author(s):  
J. Heitzig ◽  
T. Kittel ◽  
J. F. Donges ◽  
N. Molkenthin

Abstract. To keep the Earth system in a desirable region of its state space, such as defined by the recently suggested "tolerable environment and development window", "guardrails", "planetary boundaries", or "safe (and just) operating space for humanity", one needs to understand not only the quantitative internal dynamics of the system and the available options for influencing it (management) but also the structure of the system's state space with regard to certain qualitative differences. Important questions are, which state space regions can be reached from which others with or without leaving the desirable region, which regions are in a variety of senses "safe" to stay in when management options might break away, and which qualitative decision problems may occur as a consequence of this topological structure? In this article, we develop a mathematical theory of the qualitative topology of the state space of a dynamical system with management options and desirable states, as a complement to the existing literature on optimal control which is more focussed on quantitative optimization and is much applied in both the engineering and the integrated assessment literature. We suggest a certain terminology for the various resulting regions of the state space and perform a detailed formal classification of the possible states with respect to the possibility of avoiding or leaving the undesired region. Our results indicate that, before performing some form of quantitative optimization such as of indicators of human well-being for achieving certain sustainable development goals, a sustainable and resilient management of the Earth system may require decisions of a more discrete type that come in the form of several dilemmas, e.g. choosing between eventual safety and uninterrupted desirability, or between uninterrupted safety and larger flexibility. We illustrate the concepts and dilemmas drawing on conceptual models from climate science, ecology, coevolutionary Earth system modelling, economics, and classical mechanics, and discuss their potential relevance for the climate and sustainability debate, in particular suggesting several levels of planetary boundaries of qualitatively increasing safety.


2015 ◽  
Vol 6 (1) ◽  
pp. 435-488
Author(s):  
J. Heitzig ◽  
T. Kittel

Abstract. To keep the Earth system in a desirable region of its state space, such as the recently suggested "tolerable environment and development window", "planetary boundaries", or "safe (and just) operating space", one not only needs to understand the quantitative internal dynamics of the system and the available options for influencing it (management), but also the structure of the system's state space with regard to certain qualitative differences. Important questions are: which state space regions can be reached from which others with or without leaving the desirable region? Which regions are in a variety of senses "safe" to stay in when management options might break away, and which qualitative decision problems may occur as a consequence of this topological structure? In this article, as a complement to the existing literature on optimal control which is more focussed on quantitative optimization and is much applied in both the engineering and the integrated assessment literature, we develop a mathematical theory of the qualitative topology of the state space of a dynamical system with management options and desirable states. We suggest a certain terminology for the various resulting regions of the state space and perform a detailed formal classification of the possible states with respect to the possibility of avoiding or leaving the undesired region. Our results indicate that before performing some form of quantitative optimization, the sustainable management of the Earth system may require decisions of a more discrete type that come in the form of several dilemmata, e.g., choosing between eventual safety and uninterrupted desirability, or between uninterrupted safety and increasing flexibility. We illustrate the concepts and dilemmata with conceptual models from classical mechanics, climate science, ecology, economics, and coevolutionary Earth system modelling and discuss their potential relevance for the climate and sustainability debate.


2019 ◽  
Author(s):  
Alan Betts

This is a compilation of my 2018 columns from the Sunday Rutland Herald and Barre/Montpelier Time Argus. This is the eleventh year of a series that started in January 2008; and a 2012 overview paper is available .These columns go through the seasons, dealing with weather, climate, climate change, energy and policy issues. They blend science and opinion with a systems perspective, and encourage the reader to explore alternative and hopeful paths for their families and society. They are framed so that a scientist will perceive them as technically accurate (although simplified); while the public can relate their tangible experience of weather and climate to the much less tangible issues of climate change, energy policy and strategies for living sustainably with the earth system. The politically motivated attacks on climate science by the current administration have however sharpened my political commentary; since climate change denial may bring immense suffering to our children and all life on Earth.I believe that earth scientists have a responsibility to communicate clearly and directly to the public –as we all share responsibility for the future of the Earth. We must deepen our collective understanding, if we are to we can make a collective decision to build a resilient future.


PAGES news ◽  
2010 ◽  
Vol 18 (2) ◽  
pp. 55-57 ◽  
Author(s):  
Cathy Whitlock ◽  
Willy Tinner
Keyword(s):  

2017 ◽  
Author(s):  
Caroline A. Masiello ◽  
◽  
Jonathan J. Silberg ◽  
Hsiao-Ying Cheng ◽  
Ilenne Del Valle ◽  
...  

2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Alexandra Schoenle ◽  
Manon Hohlfeld ◽  
Karoline Hermanns ◽  
Frédéric Mahé ◽  
Colomban de Vargas ◽  
...  

AbstractHeterotrophic protists (unicellular eukaryotes) form a major link from bacteria and algae to higher trophic levels in the sunlit ocean. Their role on the deep seafloor, however, is only fragmentarily understood, despite their potential key function for global carbon cycling. Using the approach of combined DNA metabarcoding and cultivation-based surveys of 11 deep-sea regions, we show that protist communities, mostly overlooked in current deep-sea foodweb models, are highly specific, locally diverse and have little overlap to pelagic communities. Besides traditionally considered foraminiferans, tiny protists including diplonemids, kinetoplastids and ciliates were genetically highly diverse considerably exceeding the diversity of metazoans. Deep-sea protists, including many parasitic species, represent thus one of the most diverse biodiversity compartments of the Earth system, forming an essential link to metazoans.


2019 ◽  
Vol 9 (1) ◽  
pp. 111-126
Author(s):  
A. F. Purkhauser ◽  
J. A. Koch ◽  
R. Pail

Abstract The GRACE mission has demonstrated a tremendous potential for observing mass changes in the Earth system from space for climate research and the observation of climate change. Future mission should on the one hand extend the already existing time series and also provide higher spatial and temporal resolution that is required to fulfil all needs placed on a future mission. To analyse the applicability of such a Next Generation Gravity Mission (NGGM) concept regarding hydrological applications, two GRACE-FO-type pairs in Bender formation are analysed. The numerical closed loop simulations with a realistic noise assumption are based on the short arc approach and make use of the Wiese approach, enabling a self-de-aliasing of high-frequency atmospheric and oceanic signals, and a NRT approach for a short latency. Numerical simulations for future gravity mission concepts are based on geophysical models, representing the time-variable gravity field. First tests regarding the usability of the hydrology component contained in the Earth System Model (ESM) by the European Space Agency (ESA) for the analysis regarding a possible flood monitoring and detection showed a clear signal in a third of the analysed flood cases. Our analysis of selected cases found that detection of floods was clearly possible with the reconstructed AOHIS/HIS signal in 20% of the tested examples, while in 40% of the cases a peak was visible but not clearly recognisable.


Sign in / Sign up

Export Citation Format

Share Document