Targeted Genome Editing in Human Cells Using CRISPR/Cas Nucleases and Truncated Guide RNAs

Author(s):  
Yanfang Fu ◽  
Deepak Reyon ◽  
J. Keith Joung
2018 ◽  
Author(s):  
Aamir Mir ◽  
Julia F. Alterman ◽  
Matthew R. Hassler ◽  
Alexandre J. Debacker ◽  
Edward Hudgens ◽  
...  

RNA-based drugs depend on chemical modifications to increase potency and nuclease stability, and to decrease immunogenicity in vivo. Chemical modification will likely improve the guide RNAs involved in CRISPR-Cas9-based therapeutics as well. Cas9 orthologs are RNA-guided microbial effectors that cleave DNA. No studies have yet explored chemical modification at all positions of the crRNA guide and tracrRNA cofactor. Here, we have identified several heavily-modified versions of crRNA and tracrRNA that are more potent than their unmodified counterparts. In addition, we describe fully chemically modified crRNAs and tracrRNAs (containing no 2’-OH groups) that are functional in human cells. These designs demonstrate a significant breakthrough for Cas9-based therapeutics since heavily modified RNAs tend to be more stable in vivo (thus increasing potency). We anticipate that our designs will improve the use of Cas9 via RNP and mRNA delivery for in vivo and ex vivo purposes.


2020 ◽  
Vol 48 (21) ◽  
pp. 12297-12309
Author(s):  
Iana Fedorova ◽  
Aleksandra Vasileva ◽  
Polina Selkova ◽  
Marina Abramova ◽  
Anatolii Arseniev ◽  
...  

Abstract CRISPR-Cas defense systems opened up the field of genome editing due to the ease with which effector Cas nucleases can be programmed with guide RNAs to access desirable genomic sites. Type II-A SpCas9 from Streptococcus pyogenes was the first Cas9 nuclease used for genome editing and it remains the most popular enzyme of its class. Nevertheless, SpCas9 has some drawbacks including a relatively large size and restriction to targets flanked by an ‘NGG’ PAM sequence. The more compact Type II-C Cas9 orthologs can help to overcome the size limitation of SpCas9. Yet, only a few Type II-C nucleases were fully characterized to date. Here, we characterized two Cas9 II-C orthologs, DfCas9 from Defluviimonas sp.20V17 and PpCas9 from Pasteurella pneumotropica. Both DfCas9 and PpCas9 cleave DNA in vitro and have novel PAM requirements. Unlike DfCas9, the PpCas9 nuclease is active in human cells. This small nuclease requires an ‘NNNNRTT’ PAM orthogonal to that of SpCas9 and thus potentially can broaden the range of Cas9 applications in biomedicine and biotechnology.


Author(s):  
Eugene V. Gasanov ◽  
Justyna Jędrychowska ◽  
Michal Pastor ◽  
Malgorzata Wiweger ◽  
Axel Methner ◽  
...  

AbstractCurrent methods of CRISPR-Cas9-mediated site-specific mutagenesis create deletions and small insertions at the target site which are repaired by imprecise non-homologous end-joining. Targeting of the Cas9 nuclease relies on a short guide RNA (gRNA) corresponding to the genome sequence approximately at the intended site of intervention. We here propose an improved version of CRISPR-Cas9 genome editing that relies on two complementary guide RNAs instead of one. Two guide RNAs delimit the intervention site and allow the precise deletion of several nucleotides at the target site. As proof of concept, we generated heterozygous deletion mutants of the kcng4b, gdap1, and ghitm genes in the zebrafish Danio rerio using this method. A further analysis by high-resolution DNA melting demonstrated a high efficiency and a low background of unpredicted mutations. The use of two complementary gRNAs improves CRISPR-Cas9 specificity and allows the creation of predictable and precise mutations in the genome of D. rerio.


Author(s):  
К.С. Кочергин-Никитский ◽  
А.В. Лавров ◽  
Е.В. Заклязьминская ◽  
С.А. Смирнихина

Наследственные кардиомиопатии характеризуются неблагоприятным прогнозом и низкой пятилетней выживаемостью пациентов с выраженной клиникой. При этом лечение, за исключением хирургического, в основном паллиативное, во многих случаях лишь трансплантация сердца может улучшить состояние пациента и прогноз. Часть наследственных кардиомиопатий ассоциирована с аутосомно-доминантными мутациями в гене DES, кодирующем белок промежуточных филаментов десмин, дефекты в котором ведут к развитию десминопатий с вовлечением наиболее активно работающих мышц - скелетных, миокарда, мышц дыхательной системы. Новые терапевтические подходы, основанные на методах геномного редактирования, могут позволить устранить каузативный генетический дефект. Так как имеются данные об отсутствии клинических симптомов у людей с гетерозиготными нонсенс мутациями в гене DES, по-видимому, имеется возможность снизить тяжесть протекания десминопатий путем нокаута мутантного аллеля в случае гетерозиготной мутации. Целью работы являлась проверка возможности специфического нокаута аллелей гена DES, несущих гетерозиготные мутации, ассоциированные с десминопатиями, методами геномного редактирования. Нами был получен генетический материал трех пациентов с десминопатиями, связанными с мутациями в гене DES (c.330_338del, p.A337P (c.1009G>C) и p.R355P (c.1064G>C)). Направляющие РНК, совместимые с нуклеазами SaCas9 и eSpCas9(1.1), были подобраны, используя онлайн сервис Benchling, и клонированы в плазмиды, несущие соответствующие эндонуклеазы Cas9. Редактирующие плазмиды котрансфицировали в клетки HEK293T вместе с «таргетными» плазмидами, содержащими участки гена DES с мутациями. Анализ характерных для негомологичного соединения концов инделов в выделенной из клеток спустя 48 часов после трансфекции тотальной ДНК проводился посредством TIDE-анализа полученных сиквенсов целевых участков, либо методом Т7Е1 анализа. Наибольшая средняя эффективность 2,22% (до 8,06%) показана при использовании sgRNA на мутацию c.330_338del в комбинации с eSpCas9(1.1). Эффективность других комбинаций направляющих РНК и Cas9 не превышала 3%. Достигнутая эффективность нокаута очевидно недостаточна для коррекции десминопатии на уровне организма. Необходимость специфического нокаутирования мутантных аллелей не позволяет использовать другие направляющие РНК для CRISPR/Cas9, поэтому необходимо совершенствование разработанных систем для повышения их эффективности либо использование новых, более эффективных, направляемых нуклеаз. Hereditary cardiomyopathies are characterized by the generally poor prognosis and low 5-year survival of patients with severe symptoms. Besides surgical approaches, cardiomyopathy therapy mainly palliative and often heart transplantation is the only option to improve patient state and prognosis. Some of these pathologies are associated with the autosomal-dominant DES gene mutations. DES encodes intermediate filaments protein desmin, which defects causes desminopathies involving most active muscles such as skeletal muscles, myocardium and respiratory muscles. New therapeutic based on genome editing approaches could be used to correct causative genetic defect. There are data that heterozygous nonsense mutations in DES gene may be asymptomatic. Thus there is, apparently, a possibility to decrease severity of desminopathy using mutant allele knockout. Purpose. The aim of this work was to test the possibility of specific knockout of the DES gene alleles with heterozygous desminopathy-associated mutations by means of genome editing methods. Materials. We received genetic materials of three patients with desminopathy caused by DES gene mutations (c.330_338del, p.A337P (c.1009G>C) и p.R355P (c.1064G>C)). Guide RNA, compatible with nucleases SaCas9 and eSpCas9(1.1) were designed using online service Benchling and cloned into plasmids with corresponding Cas9 nucleases. Editing plasmids were cotransfected into HEK293T cells with “target” plasmids, containing DES gene sites with mutations. NHEJ-produced indels were assessed using TIDE-analysis with amplified and sequenced sites or using T7E1 analysis. Results. Combination sgRNA for c.330_338del with eSpCas9(1.1) demonstrated most mean efficiency of 2,22% (up to 8,06%). Others combinations of sgRNAs and Cas9 efficiency did not overcome 3%. Conclusions. Achieved knockout efficiency is evidently not enough for organism-level desminopathy correction. The need for specific knockout of mutated alleles does not allow usage of different guide RNAs for CRISPR/Cas9, so it is necessary to improve the developed systems to increase their efficiency or to use new, more efficient, targeted nucleases.


2019 ◽  
Vol 37 (1) ◽  
pp. 21-27 ◽  
Author(s):  
Tianwen Li ◽  
Linwen Zhu ◽  
Bingxiu Xiao ◽  
Zhaohui Gong ◽  
Qi Liao ◽  
...  

2020 ◽  
Author(s):  
Regina Tkach ◽  
Natalia Nikitchina ◽  
Nikita Shebanov ◽  
Vladimir Mekler ◽  
Egor Ulashchik ◽  
...  

ABSTRACTCRISPR RNAs (crRNAs) directing target DNA cleavage by type V-A Cas12a nucleases consist of repeat-derived 5’-scaffold moiety and 3’-spacer moiety. We demonstrate that removal of most of the 20-nucleotide scaffold has only a slight effect on in vitro target DNA cleavage by Cas12a ortholog from Acidaminococcus sp (AsCas12a). In fact, residual cleavage was observed even in the presence of a 20-nucleotide crRNA spacer part only, while crRNAs split into two individual moieties (scaffold and spacer RNAs) catalyzed highly specific and efficient cleavage of target DNA. Our data also indicate that AsCas12a combined with split crRNA forms a stable complex with the target. These observations were also confirmed in lysates of human cells expressing AsCas12a. The ability of the AsCas12a nuclease to be programmed with split crRNAs opens new lines of inquiry into the mechanisms of target recognition and cleavage and will further facilitate genome editing techniques based on Cas12a nucleases.


2019 ◽  
Author(s):  
Florian Hahn ◽  
Andrey Korolev ◽  
Laura Sanjurjo Loures ◽  
Vladimir Nekrasov

AbstractBackgroundCRISPR/Cas has recently become a widely used genome editing tool in various organisms, including plants. Applying CRISPR/Cas often requires delivering multiple expression units into plant and hence there is a need for a quick and easy cloning procedure. The modular cloning (MoClo), based on the Golden Gate (GG) method, has enabled development of cloning systems with standardised genetic parts, e.g. promoters, coding sequences or terminators, that can be easily interchanged and assembled into expression units, which in their own turn can be further assembled into higher order multigene constructs.ResultsHere we present an expanded cloning toolkit that contains ninety-nine modules encoding a variety of CRISPR/Cas-based nucleases and their corresponding guide RNA backbones. Among other components, the toolkit includes a number of promoters that allow expression of CRISPR/Cas nucleases (or any other coding sequences) and their guide RNAs in monocots and dicots. As part of the toolkit, we present a set of modules that enable quick and facile assembly of tRNA-sgRNA polycistronic units without a PCR step involved. We also demonstrate that our tRNA-sgRNA system is functional in wheat protoplasts.ConclusionsWe believe the presented CRISPR/Cas toolkit is a great resource that will contribute towards wider adoption of the CRISPR/Cas genome editing technology and modular cloning by researchers across the plant science community.


mBio ◽  
2021 ◽  
Vol 12 (2) ◽  
Author(s):  
Zhiwei Hu ◽  
Yannan Wang ◽  
Qian Liu ◽  
Yan Qiu ◽  
Zhiyu Zhong ◽  
...  

ABSTRACT Base editing is a powerful genome editing approach that enables single-nucleotide changes without double-stranded DNA breaks (DSBs). However, off-target effects as well as other undesired editings at on-target sites remain obstacles for its application. Here, we report that bubble hairpin single guide RNAs (BH-sgRNAs), which contain a hairpin structure with a bubble region on the 5′ end of the guide sequence, can be efficiently applied to both cytosine base editor (CBE) and adenine base editor (ABE) and significantly decrease off-target editing without sacrificing on-target editing efficiency. Meanwhile, such a design also improves the purity of C-to-T conversions induced by base editor 3 (BE3) at on-target sites. Our results present a distinctive and effective strategy to improve the specificity of base editing. IMPORTANCE Base editors are DSB-free genome editing tools and have been widely used in diverse living systems. However, it is reported that these tools can cause substantial off-target editings. To meet this challenge, we developed a new approach to improve the specificity of base editors by using hairpin sgRNAs with a bubble. Furthermore, our sgRNA design also dramatically reduced indels and unwanted base substitutions at on-target sites. We believe that the BH-sgRNA design is a significant improvement over existing sgRNAs of base editors, and our design promises to be adaptable to various base editors. We expect that it will make contributions to improving the safety of gene therapy.


Sign in / Sign up

Export Citation Format

Share Document