Coupling Microscale Transport and Tissue Mechanics: Modeling Strategies for Arterial Multiphysics

Author(s):  
M. Marino ◽  
G. Pontrelli ◽  
G. Vairo ◽  
P. Wriggers
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Bijal Patel ◽  
Bryan T. Wonski ◽  
Dan M. Saliganan ◽  
Ali Rteil ◽  
Loay S. Kabbani ◽  
...  

AbstractThe ideal engineered vascular graft would utilize human-derived materials to minimize foreign body response and tissue rejection. Current biological engineered blood vessels (BEBVs) inherently lack the structure required for implantation. We hypothesized that an ECM material would provide the structure needed. Skin dermis ECM is commonly used in reconstructive surgeries, is commercially available and FDA-approved. We evaluated the commercially-available decellularized skin dermis ECM Alloderm for efficacy in providing structure to BEBVs. Alloderm was incorporated into our lab’s unique protocol for generating BEBVs, using fibroblasts to establish the adventitia. To assess structure, tissue mechanics were analyzed. Standard BEBVs without Alloderm exhibited a tensile strength of 67.9 ± 9.78 kPa, whereas Alloderm integrated BEBVs showed a significant increase in strength to 1500 ± 334 kPa. In comparison, native vessel strength is 1430 ± 604 kPa. Burst pressure reached 51.3 ± 2.19 mmHg. Total collagen and fiber maturity were significantly increased due to the presence of the Alloderm material. Vessels cultured for 4 weeks maintained mechanical and structural integrity. Low probability of thrombogenicity was confirmed with a negative platelet adhesion test. Vessels were able to be endothelialized. These results demonstrate the success of Alloderm to provide structure to BEBVs in an effective way.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Qingqiao Xie ◽  
Yuandi Zhuang ◽  
Gaojun Ye ◽  
Tiankuo Wang ◽  
Yi Cao ◽  
...  

AbstractMany soft tissues are compression-stiffening and extension-softening in response to axial strains, but common hydrogels are either inert (for ideal chains) or tissue-opposite (for semiflexible polymers). Herein, we report a class of astral hydrogels that are structurally distinct from tissues but mechanically tissue-like. Specifically, hierarchical self-assembly of amphiphilic gemini molecules produces radial asters with a common core and divergently growing, semiflexible ribbons; adjacent asters moderately interpenetrate each other via interlacement of their peripheral ribbons to form a gel network. Resembling tissues, the astral gels stiffen in compression and soften in extension with all the experimental data across different gel compositions collapsing onto a single master curve. We put forward a minimal model to reproduce the master curve quantitatively, underlying the determinant role of aster-aster interpenetration. Compression significantly expands the interpenetration region, during which the number of effective crosslinks is increased and the network strengthened, while extension does the opposite. Looking forward, we expect this unique mechanism of interpenetration to provide a fresh perspective for designing and constructing mechanically tissue-like materials.


Author(s):  
Victor K. Lai ◽  
Mohammad F. Hadi ◽  
Robert T. Tranquillo ◽  
Victor H. Barocas

In addition to their obvious biological roles in tissue function, cells often play a significant mechanical role through a combination of passive and active behaviors. Phenomenological and continuum modeling approaches to understand tissue biomechanics have included improved constitutive laws that incorporate anisotropy in the extracellular matrix (ECM) and/or cellular phenomenon, e.g, [1]. The lack of microstructural detail in these models, however, limits their ability to explore the respective contributions and interactions between different components within a tissue. In contrast, structural approaches attempt to understand tissue biomechanics by incorporating microstructural details directly into the model, e.g., the tensegrity model [2], cellular solids models [3], or biopolymer models [4]. Research in our group focuses on developing a comprehensive model to predict the mechanical behavior of soft tissues via a multiscale approach, a technique that allows integration of the microstructural details of different components into the modeling framework. A significant gap in our previous models, however, is the absence of cells. The current work represents an improvement of the multiscale model via the addition of cells, and investigates the passive mechanical contribution of cells to overall tissue mechanics.


2014 ◽  
Vol 1648 ◽  
Author(s):  
Michael Culler ◽  
Keri A. Ledford ◽  
Jason H. Nadler

ABSTRACTRemora fish are capable of fast, reversible and reliable adhesion to a wide variety of both natural and artificial marine hosts through a uniquely evolved dorsal pad. This adhesion is partially attributed to suction, which requires a robust seal between the pad interior and the ambient environment. Understanding the behavior of remora adhesion based on measurable surface parameters and material properties is a critical step when creating artificial, bio-inspired devices. In this work, structural and fluid finite element models (FEM) based on a simplified “unit cell” geometry were developed to predict the behavior of the seal with respect to host/remora surface topology and tissue material properties.


Sign in / Sign up

Export Citation Format

Share Document