Large Coal-Derived Gas Fields and Their Gas Sources in the Tarim Basin

Author(s):  
Jinxing Dai
Keyword(s):  
2004 ◽  
Author(s):  
Wenjie Song ◽  
Tongwen Jiang ◽  
Zhenbiao Wang ◽  
Ruyong Li ◽  
Jilei Feng ◽  
...  
Keyword(s):  

Geofluids ◽  
2019 ◽  
Vol 2019 ◽  
pp. 1-15
Author(s):  
Xiaobo Wang ◽  
Caineng Zou ◽  
Jian Li ◽  
Guoqi Wei ◽  
Jianfa Chen ◽  
...  

The Kuche Depression is considered as the most important gas resource potential and gas exploring area with great gas resource potential and prospect in the Tarim Basin. Based on geochemical experimental analyses and comprehensive geological studies, the general geochemical characteristics of molecular and isotope compositions of rare gases as well as hydrocarbon gases and nonhydrocarbon gases are comparatively studied in the Kuche and Southwestern Depressions. Then, their genetic types are separately identified and gas originations are comprehensively discussed. The main results are as follows. (1) Gas fields in the Kuche Depression have a higher methane abundance, accompanied with low N2and CO2abundances, but the Akemomu gas field in the Southwestern Depression has a relatively lower average methane abundance, accompanied with high average N2and CO2abundances. The helium abundance of natural gases in gas fields from the Kuche Depression general has 1 order of magnitude higher than the air value. Comparatively, it has more than 2 orders of magnitude higher than the atmospheric value in the Akemomu gas field from the Southwestern Depression. The neon, argon, krypton, and xenon abundances in both Kuche and Southwestern Depressions are lower than the corresponding air values. (2) Natural gases from gas fields in the Kuche Depression and the Southwestern Depressions are generally typical coal-formed gases. The rare gases in the Kuche Depression have typical crustal genesis, mainly deriving from the radioactive decay of elements in the crust, while in the Akemomu gas field from the Southwestern Depression, the rare gases have main crustal genesis with a proportion of 92.5%, probably accompanied with a little mantled genetic contribution. (3) Natural gases in the Kuche Depression are generally derived from coal measure source rocks of Jurassic and Triassic, which principally originated from Jurassic in strata period and coals in source rock types. The Jurassic source rocks account for 55%-75% and the Triassic source rocks account for 25%-45% approximately, while coals occupy 68% and mudstones occupy 32% separately. Natural gases from the Akemomu gas field in the Southwestern Depression mainly originated from humic mudstones of marine and continental transitional source rocks of Carboniferous to Permian.


2021 ◽  
Vol 9 ◽  
Author(s):  
Yunyan Ni ◽  
Limiao Yao ◽  
Fengrong Liao ◽  
Jianping Chen ◽  
Cong Yu ◽  
...  

In order to have a better understanding of the geochemical characteristics of gases from deep depths, gases from the clastic sandstone reservoirs in the Dabei and Keshen gas fields in the Kuqa depression, Tarim Basin, and gases from the marine carbonate reservoirs (Ordovician and Cambrian) in the craton area of Tarim Basin and Sichuan Basin (Yuanba, Longgang, Puguang gas fields) are investigated based on the molecular composition, stable carbon and hydrogen isotopes. Deep gas, either from the clastic sandstone reservoirs or from the marine carbonate reservoirs, is dominated by alkane gas. Gases from Kuqa depression and Sichuan Basin are dry gas, with high gas dryness coefficient, 0.976 and 0.999, respectively. Deep gas from the craton area in Tarim Basin includes both dry and wet gases. N2 and CO2 are the common non-hydrocarbon components in the deep gas. Gases from the continental sandstone reservoirs have no H2S, while gases from the marine carbonate reservoirs often have H2S. The relatively high δ13C2 value in the Kuqa depression indicates the gas was generated from humic type III kerogen, while the relatively low δ13C2 value in the craton area of Tarim Basin indicates most of the gas was generated from the marine sapropelic organic matter. Deep gas in Sichuan Basin, which has medium δ13C2 value, was generated from both humic type III and sapropelic type II organic matter. Carbon isotopic anomaly such as partial carbon isotopic reversal or relatively heavy carbon isotope is common in the deep gas, which is caused by secondary alteration. Gases from the Dabei gas field have a mean δ2H1 value of –156‰, while gases from the craton area of Tarim Basin, and Yuanba and Puguang gas fields in Sichuan Basin have relatively heavier δ2H1 value, i.e., average at −130 and −122‰, respectively. The abnormally heavier δ2H1 value in Dabei gas field is due to the high thermal maturity and possible saline depositional environment of the source rocks. This study performed a comprehensive comparison of the geochemical characteristics of the deep gases with different origins, which may provide a hint for future exploration of deep gas in the world.


2019 ◽  
Vol 12 (4) ◽  
pp. 141-155 ◽  
Author(s):  
Ahmed Mahdi

This article examines the claim that Israel’s natural gas exports from its Mediterranean gas fields will give geopolitical leverage to Tel Aviv over the importing countries. Using the geoeconomic tradition of Klaus Knorr and others who wrote about applying leverage using economic resources to gain geopolitical advantage, it is argued that certain criteria have to be satisfied for economic influence attempts, and that Israel’s gas exports do not satisfy these criteria. They include the importer’s supply vulnerability, the supplier’s demand vulnerability, and the salience of energy as an issue between both countries. Israeli gas exports to Egypt are used as a case study.


CIM Journal ◽  
2018 ◽  
Vol 9 (4) ◽  
pp. 195-214
Author(s):  
G. J. Simandl ◽  
C. Akam ◽  
M. Yakimoski ◽  
D. Richardson ◽  
A. Teucher ◽  
...  

2015 ◽  
Vol 49 (3) ◽  
pp. 271-282 ◽  
Author(s):  
Daxiang He ◽  
Jianfa Chen ◽  
Chen Zhang ◽  
Wei Li ◽  
Jianxun Zhou
Keyword(s):  

Author(s):  
A.V. Antonov ◽  
◽  
Yu.V. Maksimov ◽  
A.N. Korkishko ◽  
◽  
...  

Sign in / Sign up

Export Citation Format

Share Document