Understanding Ecosystem Effects of Dams

Author(s):  
Emily H. Stanley
Keyword(s):  
Author(s):  
Linda Sicko-Goad

Although the use of electron microscopy and its varied methodologies is not usually associated with ecological studies, the types of species specific information that can be generated by these techniques are often quite useful in predicting long-term ecosystem effects. The utility of these techniques is especially apparent when one considers both the size range of particles found in the aquatic environment and the complexity of the phytoplankton assemblages.The size range and character of organisms found in the aquatic environment are dependent upon a variety of physical parameters that include sampling depth, location, and time of year. In the winter months, all the Laurentian Great Lakes are uniformly mixed and homothermous in the range of 1.1 to 1.7°C. During this time phytoplankton productivity is quite low.


2012 ◽  
Vol 449 ◽  
pp. 27-40 ◽  
Author(s):  
J Näslund ◽  
GS Samuelsson ◽  
JS Gunnarsson ◽  
FJA Nascimento ◽  
HC Nilsson ◽  
...  

2021 ◽  
Vol 770 ◽  
pp. 144749
Author(s):  
Gianluca Sarà ◽  
Chiara Giommi ◽  
Antonio Giacoletti ◽  
Erminia Conti ◽  
Christian Mulder ◽  
...  

2017 ◽  
Vol 98 (8) ◽  
pp. 2099-2111
Author(s):  
Fikret Öndes ◽  
Michel J. Kaiser ◽  
Lee G. Murray

Baited trap or pot fisheries are considered to have relatively few wider ecosystem effects on the marine environment, particularly when compared with towed mobile fishing gear. However, this assumption is rarely tested in the field. This study aimed to determine the composition of non-target species that occur in crustacean pots and to assess spatial and temporal differences in catches in the waters around the Isle of Man, Irish Sea. The data were collected using fishery independent surveys and a questionnaire study. Based on fishery independent surveys, a total of five taxonomic groups and 43 species occurred as by-catch. The dominant by-catch species was velvet crab Necora puber. The by-catch per unit effort (BPUE) for all of the non-target species was low particularly in comparison to towed bottom gear fisheries around the Isle of Man. BPUE of species composition varied considerably between different locations around the Isle of Man. The results of both the fishery independent and questionnaire data suggested that the by-catch rates varied with season with peak BPUE occurring in spring which then declined into autumn and winter. By-catch composition did not decrease significantly with an increasing target species catch. Overall, by-catch was low relative to target species catch which may be partially attributable to the use of escape panels in pot fisheries in the Isle of Man.


BioScience ◽  
2001 ◽  
Vol 51 (3) ◽  
pp. 180 ◽  
Author(s):  
CHARLES T. DRISCOLL ◽  
GREGORY B. LAWRENCE ◽  
ARTHUR J. BULGER ◽  
THOMAS J. BUTLER ◽  
CHRISTOPHER S. CRONAN ◽  
...  

2017 ◽  
Vol 147 ◽  
pp. 133-143 ◽  
Author(s):  
Tarin Paz-Kagan ◽  
Noa Ohana-Levi ◽  
Moshe Shachak ◽  
Eli Zaady ◽  
Arnon Karnieli

2021 ◽  
Vol 10 (1) ◽  
Author(s):  
Anaëlle J. Lemasson ◽  
Antony M. Knights ◽  
Murray Thompson ◽  
Gennadi Lessin ◽  
Nicola Beaumont ◽  
...  

Abstract Background Numerous man-made structures (MMS) have been installed in various parts of the ocean (e.g. oil and gas structures, offshore wind installations). Many are now at, or nearing, the end of their intended life. Currently, we only have a limited understanding of decommissioning effects. In many locations, such as the North Sea, regulations restrict decommissioning options to complete removal, with little consideration of alternative management options might offer. To generate a reliable evidence-base to inform the decision-making processes pertaining to marine MMS management, we propose a wide-encompassing systematic map of published research on the ecosystem effects (including ecosystem services) of marine MMS while in place and following cessation of operations (i.e. including effects of alternative decommissioning options). This map is undertaken as part of the UKRI DREAMS project which aims to develop a system to show the relative effects of implementing different decommissioning strategies in the North Sea. Method For the purpose of this map, we will keep our focus global, in order to subsequently draw comparisons between marine regions. The proposed map will aim to answer the following two primary questions: 1. What published evidence exists for the effects of marine man-made structures while in place on the marine ecosystem? 2. What published evidence exists for the effects of the decommissioning of marine man-made structures on the marine ecosystem? The map will follow the Collaboration for Environmental Evidence Guidelines and Standards for Evidence Synthesis in Environmental Management. Searches will be run primarily in English in at least 13 databases and 4 websites. Returns will be screened at title/abstract level and at full-text against pre-defined criteria. Relevant meta-data will be extracted for each study included. Results will be used to build a database of evidence, which will be made freely available. This map, expected to be large, will improve our knowledge of the available evidence for the ecosystem effects of MMS in the global marine environment. It will subsequently inform the production of multiple systematic-reviews and meta-analyses.


Sign in / Sign up

Export Citation Format

Share Document