Classification and Analysis of Facebook Metrics Dataset Using Supervised Classifiers

Author(s):  
Ranjit Panigrahi ◽  
Samarjeet Borah
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Andrea Apicella ◽  
Pasquale Arpaia ◽  
Mirco Frosolone ◽  
Nicola Moccaldi

AbstractA method for EEG-based distraction detection during motor-rehabilitation tasks is proposed. A wireless cap guarantees very high wearability with dry electrodes and a low number of channels. Experimental validation is performed on a dataset from 17 volunteers. Different feature extractions from spatial, temporal, and frequency domain and classification strategies were evaluated. The performances of five supervised classifiers in discriminating between attention on pure movement and with distractors were compared. A k-Nearest Neighbors classifier achieved an accuracy of 92.8 ± 1.6%. In this last case, the feature extraction is based on a custom 12 pass-band Filter-Bank (FB) and the Common Spatial Pattern (CSP) algorithm. In particular, the mean Recall of classification (percentage of true positive in distraction detection) is higher than 92% and allows the therapist or an automated system to know when to stimulate the patient’s attention for enhancing the therapy effectiveness.


2021 ◽  
Vol 13 (1) ◽  
pp. 1-16
Author(s):  
Michela Fazzolari ◽  
Francesco Buccafurri ◽  
Gianluca Lax ◽  
Marinella Petrocchi

Over the past few years, online reviews have become very important, since they can influence the purchase decision of consumers and the reputation of businesses. Therefore, the practice of writing fake reviews can have severe consequences on customers and service providers. Various approaches have been proposed for detecting opinion spam in online reviews, especially based on supervised classifiers. In this contribution, we start from a set of effective features used for classifying opinion spam and we re-engineered them by considering the Cumulative Relative Frequency Distribution of each feature. By an experimental evaluation carried out on real data from Yelp.com, we show that the use of the distributional features is able to improve the performances of classifiers.


2020 ◽  
Author(s):  
Bahar Azari ◽  
Christiana Westlin ◽  
Ajay Satpute ◽  
J. Benjamin Hutchinson ◽  
Philip A. Kragel ◽  
...  

Machine learning methods provide powerful tools to map physical measurements to scientific categories. But are such methods suitable for discovering the ground truth about psychological categories? We use the science of emotion as a test case to explore this question. In studies of emotion, researchers use supervised classifiers, guided by emotion labels, to attempt to discover biomarkers in the brain or body for the corresponding emotion categories. This practice relies on the assumption that the labels refer to objective categories that can be discovered. Here, we critically examine this approach across three distinct datasets collected during emotional episodes- measuring the human brain, body, and subjective experience- and compare supervised classification studies with those from unsupervised clustering in which no a priori labels are assigned to the data. We conclude with a set of recommendations to guide researchers towards meaningful, data-driven discoveries in the science of emotion and beyond.


Sensors ◽  
2020 ◽  
Vol 20 (5) ◽  
pp. 1459 ◽  
Author(s):  
Tamás Czimmermann ◽  
Gastone Ciuti ◽  
Mario Milazzo ◽  
Marcello Chiurazzi ◽  
Stefano Roccella ◽  
...  

This paper reviews automated visual-based defect detection approaches applicable to various materials, such as metals, ceramics and textiles. In the first part of the paper, we present a general taxonomy of the different defects that fall in two classes: visible (e.g., scratches, shape error, etc.) and palpable (e.g., crack, bump, etc.) defects. Then, we describe artificial visual processing techniques that are aimed at understanding of the captured scenery in a mathematical/logical way. We continue with a survey of textural defect detection based on statistical, structural and other approaches. Finally, we report the state of the art for approaching the detection and classification of defects through supervised and non-supervised classifiers and deep learning.


Sign in / Sign up

Export Citation Format

Share Document