Tectonic controls on the building of the North Patagonian fold-thrust belt (~ 43°S)

2019 ◽  
pp. 609-650 ◽  
Author(s):  
Echaurren A. ◽  
Gianni Guido M. ◽  
Fernández Paz Lucía ◽  
Navarrete C. ◽  
Oliveros Verónica ◽  
...  
Keyword(s):  
2020 ◽  
Vol 90 (9) ◽  
pp. 1175-1197
Author(s):  
Anne C. Fetrow ◽  
Kathryn E. Snell ◽  
Russell V. Di Fiori ◽  
Sean P. Long ◽  
Joshua W. Bonde

ABSTRACT Terrestrial sedimentary archives record critical information about environment and climate of the past, as well as provide insights into the style, timing, and magnitude of structural deformation in a region. The Cretaceous Newark Canyon Formation, located in central Nevada, USA, was deposited in the hinterland of the Sevier fold–thrust belt during the North American Cordilleran orogeny. While previous research has focused on the coarser-grained, fluvial components of the Newark Canyon Formation, the carbonate and finer-grained facies of this formation remain comparatively understudied. A more complete understanding of the Newark Canyon Formation provides insights into Cretaceous syndeformational deposition in the Central Nevada thrust belt, serves as a useful case study for deconvolving the influence of tectonic and climatic forces on sedimentation in both the North American Cordillera and other contractional orogens, and will provide a critical foundation upon which to build future paleoclimate and paleoaltimetry studies. We combine facies descriptions, stratigraphic measurements, and optical and cathodoluminescence petrography to develop a comprehensive depositional model for the Newark Canyon Formation. We identify six distinct facies that show that the Newark Canyon Formation evolved through four stages of deposition: 1) an anastomosing river system with palustrine interchannel areas, 2) a braided river system, 3) a balance-filled, carbonate-bearing lacustrine system, and 4) a second braided river system. Although climate undoubtedly played a role, we suggest that the deposition and coeval deformation of the synorogenic Newark Canyon Formation was in direct response to the construction of east-vergent contractional structures proximal to the type section. Comparison to other contemporary terrestrial sedimentary basins deposited in a variety of tectonic settings provides helpful insights into the influences of regional tectonics, regional and global climate, catchment characteristics, underlying lithologies, and subcrop geology in the preserved sedimentary record.


2011 ◽  
Vol 182 (4) ◽  
pp. 337-346 ◽  
Author(s):  
Stéphane Molliex ◽  
Olivier Fabbri ◽  
Vincent Bichet ◽  
Herfried Madritsch

Abstract This study presents new constraints for Plio-Quaternary (post-2.4 Ma to present-day) anticline growth along the frontal zone of the Jura fold-and-thrust belt, in the Forêt de Chaux area, located 30 km SW of Besançon. The Forêt de Chaux area consists of a N080°E-elongated depression bordered by the Doubs and Loue rivers to the north and south respectively, and filled with Sundgau-type Pliocene alluvial deposits. The upper surface of the Pliocene deposits between the Loue and Doubs rivers is marked by a N065°E-trending ridge crossing the depression in a median position. A differential uplift along this ridge, post-dating the deposition of the gravels (2.4 Ma), is suggested by several geomorphological observations such as the opposite river migration on each side of the ridge as well as variations of drainage geometry and incision intensity. Geological and geophysical subsurface data indicate that the ridge roughly coincides with the axis of an anticline hidden beneath the Pliocene deposits. The observed uplift is presumably related to a post-2.4 Ma anticline growth. The fact that the azimuth of the hidden anticline axis is parallel to the strike of deep-seated Late Paleozoic basement faults and not to the local strike of the thin-skinned Jura structures indicates that the inferred post-Pliocene deformation could possibly be an expression of a recent thick-skinned deformation of the basement of the northern Alpine foreland. The focal depth (15 km) of the February 24th, 2004, Besançon earthquake supports the hypothesis of a basement fault reactivation.


2014 ◽  
Vol 56 (10) ◽  
pp. 1276-1294 ◽  
Author(s):  
Wangpeng Li ◽  
Shaofeng Liu ◽  
Tao Qian ◽  
Guoxing Dou ◽  
Tangjun Gao

1988 ◽  
Vol 25 (8) ◽  
pp. 1161-1174 ◽  
Author(s):  
H. G. Miller

New gravity data from the northeastern portion of the Gander Terrane of Newfoundland are analysed in association with existing gravity data. These are combined with the digitized and filtered aeromagnetic and geochemical data to produce an interpretation of the subsurface geology.Interpretation of these data suggests that there are two extensive areas underlain at depth by rocks similar to the Dunnage Terrane mafic and ultramafic rocks that outcrop at the Gander River ultrabasic belt. These regions of ultramafic and mafic rocks extend in two north–south belts throughout the study area, and both may have tongues continuing seaward beneath the Deadman's Bay pluton. The western belt, the Ocean Pond belt, probably consists of a series of granitic plutons underlain by mafic and ultramafic rocks. Geophysical modelling corroborates an earlier geological interpretation that the eastern belt, the Indian Bay Big Pond thrust belt, is a thrust sheet. The lateral extent of the thrust belt is accurately determined by new geophysical data. The presence of these two subsurface units composed of material similar to typical Dunnage Terrane rocks demonstrates that the Gander River ultrabasic belt is neither the most eastward extent of the Dunnage Terrane nor the sole thrust upon which Dunnage Terrane material was transported eastward. The two belts have associated diagnostic geochemical signatures and are bounded on the north and south by linear patterns in both the geophysical and geochemical patterns. The block defined by these geophysical and geochemical patterns is the same as that upon which the classic Gander Terrane was defined. The evidence presented in this paper suggests that this block may be allochthonous, which implies that the nature of the Gander Terrane may need to be reconsidered.


2021 ◽  
Vol 9 ◽  
Author(s):  
Mary Hubbard ◽  
Malay Mukul ◽  
Ananta Prasad Gajurel ◽  
Abhijit Ghosh ◽  
Vinee Srivastava ◽  
...  

The continental collision process has made a large contribution to continental growth and reconfiguration of cratons throughout Earth history. Many of the mountain belts present today are the product of continental collision such as the Appalachians, the Alps, the Cordillera, the Himalaya, the Zagros, and the Papuan Fold and Thrust Belt. Though collisional mountain belts are generally elongate and laterally continuous, close inspection reveals disruptions and variations in thrust geometry and kinematics along the strike of the range. These lateral variations typically coincide with cross structures and have been documented in thrust fault systems with a variety of geometries and kinematic interpretations. In the Himalaya, cross faults provide segment boundaries that, in some cases separate zones of differing thrust geometry and may even localize microseismicity or limit areas of active seismicity on adjacent thrust systems. By compiling data on structural segmentation along the length of the Himalayan range, we find lateral variations at all levels within the Himalaya. Along the Gish fault of the eastern Indian Himalaya, there is evidence in the foreland for changes in thrust-belt geometry across the fault. The Gish, the Ganga, and the Yamuna faults all mark boundaries of salients and recesses at the mountain front. The Benkar fault in the Greater Himalayan sequence of eastern Nepal exhibits a brittle-ductile style of deformation with fabric that crosscuts the older thrust-sense foliation. Microseismicity data from several regions in Nepal shows linear, northeast-striking clusters of epicenters sub-parallel to cross faults. The map pattern of aftershock data from the 2015 Nepal earthquakes has an abrupt northeast-trending termination on its eastern side suggesting the presence of a structure of that orientation that limited slip. The orientations of the recognized cross faults and seismic patterns also align with the extensional zones to the north on the Tibetan Plateau and the Indian basement structures to the south. Results from multiple studies are consistent with a link between cross faults and either of these structural trends to the north or south and suggest that cross faults may play a role in segmenting deformation style and seismic activity along the length of the Himalaya.


2021 ◽  
pp. M57-2020-6
Author(s):  
John R. Hopper ◽  
Jon R. Ineson

AbstractThe Franklinian margin composite tectono-sedimentary element (CTSE) in North Greenland is dominated by Neoproterozoic - lowermost Devonian sedimentary strata that include early syn-rift through passive margin TSEs of mixed carbonate and siliciclastic facies. The sedimentary successions are well exposed in much of northern Greenland, but locally were strongly affected by the Ellesmerian Orogeny, resulting in a fold and thrust belt that deformed the northernmost exposures. An exposed palaeo-oilfield attests to the petroleum potential of the basin. Several formations have good source potential and several others have good reservoir properties. Palaeo-heat flow indicators show that temperatures increase to the north, where much of the basin is over-mature. Because of the remoteness of the area and the restricted locations where petroleum potential is likely to remain, the basin is not currently a target for exploration.


2021 ◽  
Author(s):  
Mustapha Meghraoui ◽  
Hassen Abdellaoui ◽  
Frédéric Masson

<p>The kinematic of tectonic motions between the African (Sahara) platform and the Maghrebian thrust belt remained unexplored since the onset of space geodesy. Here, we use data of 6 permanent GNSS stations located north and south of the Atlas thrust belt in Algeria to constrain shortening and transpression at the tectonic boundary. The permanent GPS data and results are obtained from the network in Algeria operative from 2013 to 2019, presented with the results of the REGAT network in Algeria since 2007. The south Atlas suture zone constitutes the limit between African (Sahara) shield domain considered as a stable continental interior and the Sahara Atlas that belong to the Alpine orogeny. The tectonic boundary is marked by a E-W to ENE-WSW, en echelon fold belt system with deformed Plio-Quaternary formations to the North and flat laying Mesozoic and Tertiary sedimentary units south of the suture zone. The GNSS data are processed using Gamit-GlobK and results show tectonic motions with a predominant 5 to 6 mm/yr velocities trending NNW-SSE to NW-SE (westward) in the Sahara Platform. The GPS velocities show uniform trend in the African platform from which we infer 0.5 to 1.0 mm/yr convergence across the south Atlas suture zone. The intraplate convergence is attested by the moderate but permanent seismic activity at the tectonic boundary.</p>


Sign in / Sign up

Export Citation Format

Share Document