Leveraging multi-modal neuroimaging for normal brain development and pediatric brain disorders

2021 ◽  
pp. 545-548
Author(s):  
Hao Huang ◽  
Tianjia Zhu ◽  
Timothy P.L. Roberts
NeuroImage ◽  
2016 ◽  
Vol 124 ◽  
pp. 1125-1130 ◽  
Author(s):  
Lindsay Walker ◽  
Lin-Ching Chang ◽  
Amritha Nayak ◽  
M. Okan Irfanoglu ◽  
Kelly N. Botteron ◽  
...  

2008 ◽  
Vol 2 (Suppl 1) ◽  
pp. P61
Author(s):  
Chelsea M Ruller ◽  
Jenna M Tabor-Godwin ◽  
Scott Robinson ◽  
Naili An ◽  
J Lindsay Whitton ◽  
...  

Epigenomics ◽  
2020 ◽  
Vol 12 (4) ◽  
pp. 371-380 ◽  
Author(s):  
Andrew M Shafik ◽  
Emily G Allen ◽  
Peng Jin

N6-methyladenosine (m6A) is a dynamic RNA modification that regulates various aspects of RNA metabolism and has been implicated in many biological processes and transitions. m6A is highly abundant in the brain; however, only recently has the role of m6A in brain development been a focus. The machinery that controls m6A is critically important for proper neurodevelopment, and the precise mechanisms by which m6A regulates these processes are starting to emerge. However, the role of m6A in neurodegenerative and neuropsychiatric diseases still requires much elucidation. This review discusses and summarizes the current body of knowledge surrounding the function of the m6A modification in regulating normal brain development, neurodegenerative diseases and outlines possible future directions.


2019 ◽  
Vol 21 (Supplement_6) ◽  
pp. vi188-vi188
Author(s):  
Nourhan Abdelfattah ◽  
Sivaraman Natarajan ◽  
Yaohui Chen ◽  
Kin-Hoe Chow ◽  
Shu-hsia Chen ◽  
...  

Abstract Immunotherapies offer remarkable potential to provide robust therapeutic benefit. Patients suffering from medulloblastoma (MB), the most frequent pediatric brain malignancy, can especially benefit from this approach, minimizing the devastating side effects of aggressive radiation and chemotherapies that disrupt normal brain development. However, regulators of the immune landscape remain poorly understood and no effective immunotherapies exist yet for MB. Here, we describe a sex-dependent Yap1 function in fSmoM2;GFAPcre SHH-MB (SG) mouse model. We show that Yap1 is both a cell-autonomous regulator of MB stem-cells and a non-cell-autonomous regulator of immune infiltrates in SHH-MB. Yap1 deletion in SG mice results in increased neuronal differentiation, significantly extended survival, and enhanced infiltration of peripheral blood immune cells (including cytotoxic T-cells, neutrophils, and macrophages). Additionally, this rescue phenotype is observed in a sex-biased manner: 65% of Yap1f/f;fSmoM2;GFAPcre males are rescued in contrast to 35% of females. These observations implicate Yap1 as a mediator of sex-biased brain-tumor formation, either through direct modulation of MB cells and/or through indirectly mediating the MB immune landscape. We are currently testing the role of sex-specific differences in the developing mouse brain to elucidate context-dependent function of Yap1 in MB genesis and maintenance.


Sign in / Sign up

Export Citation Format

Share Document