A home away from home: The role of eco-evolutionary experience in establishment and invasion success

2022 ◽  
pp. 35-54
Author(s):  
Johannes Le Roux
Keyword(s):  
2018 ◽  
Vol 285 (1871) ◽  
pp. 20171936 ◽  
Author(s):  
Tobin D. Northfield ◽  
Susan G. W. Laurance ◽  
Margaret M. Mayfield ◽  
Dean R. Paini ◽  
William E. Snyder ◽  
...  

At local scales, native species can resist invasion by feeding on and competing with would-be invasive species. However, this relationship tends to break down or reverse at larger scales. Here, we consider the role of native species as indirect facilitators of invasion and their potential role in this diversity-driven ‘invasion paradox’. We coin the term ‘native turncoats’ to describe native facilitators of non-native species and identify eight ways they may indirectly facilitate species invasion. Some are commonly documented, while others, such as indirect interactions within competitive communities, are largely undocumented in an invasion context. Therefore, we use models to evaluate the likelihood that these competitive interactions influence invasions. We find that native turncoat effects increase with the number of resources and native species. Furthermore, our findings suggest the existence, abundance and effectiveness of native turncoats in a community could greatly influence invasion success at large scales.


2020 ◽  
Author(s):  
Annemarie van der Marel ◽  
Jane M. Waterman ◽  
Marta López-Darias

AbstractInvasive species –species that have successfully overcome the barriers of transport, introduction, establishment, and spread– are a risk to biodiversity and ecosystem function. Introduction effort is one of the main factors attributed to invasion success, but life history traits are also important as they influence population growth. In this contribution, we first investigated life history traits of the Barbary ground squirrel, Atlantoxerus getulus, a species with a remarkably low introduction effort, and studied whether their exceptional invasion success is due to a very fast life history profile through a comparison of these traits to other successfully invaded mammals. We then examined whether number of founders and/or a fast life history influences invasion success of squirrels. We found that Barbary ground squirrels were on the fast end of the “fast-slow continuum”, but their life history is not the only contributing factor for their invasion success, as the life history profile is comparable to other invasive species that do not have such a low introduction effort. We also found that neither life history traits nor number of founders explained invasion success of introduced squirrels in general. These results contradict the concept that introduction effort is the main factor explaining invasion success, especially in squirrels. Instead, we argue that invasion success can be influenced by multiple aspects of the new habitat or the biology of the introduced species.


2020 ◽  
Author(s):  
Mortier Frederik ◽  
Masier Stefano ◽  
Bonte Dries

AbstractPopulation spread from a limited pool of founding propagules is at the basis of biological invasions. The size and genetic variation of these propagules eventually affect whether the invasion is successful or not. The inevitable bottleneck at introduction decreases genetic diversity, and therefore should affect population growth and spread. However, many heavily bottlenecked invasive populations have been successful in nature. These negative effects of a genetic bottleneck are typically considered to be relaxed in benign environments because of a release from stress. Despite its relevance to understand and predict invasions, empirical evidence on the role of genetic diversity in relation to habitat quality is largely lacking. We use the mite Tetranychus urticae Koch as a model to experimentally assess spread rate and the size of genetically depleted inbred populations and enriched mixed populations. This was assessed in replicated linear patch systems consisting of benign (bean), challenging (tomato) or a gradient (bean to tomato) habitat. We find that genetic diversity increased population spread rates in the benign but not in the challenging habitat. Additionally, variance in spread was consistently higher in genetically poor populations and highest in the challenging habitat. Our experiment challenges the general view that a bottleneck in genetic variation decreases invasion success in challenging, but not in benign environments.


2019 ◽  
Vol 116 (15) ◽  
pp. 7382-7386 ◽  
Author(s):  
Qinfeng Guo ◽  
Songlin Fei ◽  
Kevin M. Potter ◽  
Andrew M. Liebhold ◽  
Jun Wen

Nonnative pests often cause cascading ecological impacts, leading to detrimental socioeconomic consequences; however, how plant diversity may influence insect and disease invasions remains unclear. High species diversity in host communities may promote pest invasions by providing more niches (i.e., facilitation), but it can also diminish invasion success because low host dominance may make it more difficult for pests to establish (i.e., dilution). Most studies to date have focused on small-scale, experimental, or individual pest/disease species, while large-scale empirical studies, especially in natural ecosystems, are extremely rare. Using subcontinental-level data, we examined the role of tree diversity on pest invasion across the conterminous United States and found that the tree-pest diversity relationships are hump-shaped. Pest diversity increases with tree diversity at low tree diversity (because of facilitation or amplification) and is reduced at higher tree diversity (as a result of dilution). Thus, tree diversity likely regulates forest pest invasion through both facilitation and dilution that operate simultaneously, but their relative strengths vary with overall diversity. Our findings suggest the role of native species diversity in regulating nonnative pest invasions.


Limnologica ◽  
2019 ◽  
Vol 79 ◽  
pp. 125717
Author(s):  
Tainã Gonçalves Loureiro ◽  
Pedro Manuel Anastácio ◽  
Sérgio Luiz de Siqueira Bueno ◽  
Camila Timm Wood ◽  
Paula Beatriz Araujo

2020 ◽  
Vol 90 (3) ◽  
Author(s):  
David N. Reznick ◽  
Sebastiano De Bona ◽  
Andrés López‐Sepulcre ◽  
Mauricio Torres ◽  
Ronald D. Bassar ◽  
...  

2014 ◽  
Vol 60 (3) ◽  
pp. 401-409 ◽  
Author(s):  
Sandra Hudina ◽  
Karlo Hock ◽  
Krešimir žganec

Abstract Traits that aid in the invasion process should exhibit a gradient across the expansion range in response to changing selection pressures. Aggression has been repeatedly associated with invasion success in many taxa, as it may help invaders to wrestle the resources from other species which enhances their success in a novel environment. However, aggression primarily allows individuals to overcome conspecific rivals, providing advantages in competition over resources. Agonistic prowess could therefore increase fitness at both ends of the expansion gradient. Here we review the role of aggression in range expansion of invasive species, and its potential role as a driver of range expansion. We analyze how these different mechanisms could affect trait variation in expanding and invasive populations. Specifically, we look at how aggression could help dilate the edges of a population through niche competition, as well as lead to exclusion from the center (i.e. areas of high population density) by the conspe-cifics. Both of these processes will result in a characteristic spatial distribution of phenotypes related to aggression that could provide insights into the ecological pressures and dynamics of expanding populations, potentially providing clues to their success as niche competitors and invasive species.


2014 ◽  
Vol 17 (5) ◽  
pp. 1283-1297 ◽  
Author(s):  
Kirsten M. Prior ◽  
Thomas H. Q. Powell ◽  
Ashley L. Joseph ◽  
Jessica J. Hellmann

Sign in / Sign up

Export Citation Format

Share Document