Ideal flow reactors

2020 ◽  
pp. 141-197
Author(s):  
Shijie Liu
Keyword(s):  
2019 ◽  
Author(s):  
Suchanuch Sachdev ◽  
Rhushabh Maugi ◽  
Sam Davis ◽  
Scott Doak ◽  
Zhaoxia Zhou ◽  
...  

<div>The interface between two immiscible liquids represent an ideal substrate for the assembly of nanomaterials. The defect free surface provides a reproducible support for creating densely packed ordered materials. Here a droplet flow reactor is presented for the synthesis and/ or assembly of nanomaterials at the interface of the emulsion. Each droplet acts as microreactor for a reaction between decamethylferrocene (DmFc) within the hexane and metal salts (Ag+/ Pd2+) in the aqueous phase. The hypothesis was that a spontaneous, interfacial reaction would lead to the assembly of nanomaterials creating a Pickering emulsion. The subsequent removal of the solvents showed how the Ag nanoparticles were trapped at the interface and retain the shape of the droplet, however the Pd nanoparticles were dispersed with no tertiary structure. To further exploit this, a one-step process where the particles are synthesised and then assembled into core-shell materials was proposed. The same reactions were performed in the presence of oleic acid stabilise Iron oxide nanoparticles dispersed within the hexane. It was shown that by changing the reaction rate and ratio between palladium and iron oxide a continuous coating of palladium onto iron oxide microspheres can be created. The same reaction with silver, was unsuccessful and resulted in the silver particles being shed into solution, or incorporated within the iron oxide micro particle. These insights offer a new method and chemistry within flow reactors for the creation of palladium and silver nanoparticles. We use the technique to create metal coated iron oxide nanomaterials but the methodology could be easily transferred to the assembly of other materials.</div><div><br></div>


2020 ◽  
Vol 10 (1-2) ◽  
pp. 58-72
Author(s):  
D. A. Sladkovskiy ◽  
K. V. Semikin ◽  
A. V. Utemov ◽  
S. P. Fedorov ◽  
E. V. Sladkovskaya ◽  
...  

1986 ◽  
Vol 250 (6) ◽  
pp. H1060-H1070 ◽  
Author(s):  
S. E. Little ◽  
J. M. Link ◽  
K. A. Krohn ◽  
J. B. Bassingthwaighte

An ideal deposition marker for measuring regional flow is completely extracted during transcapillary passage and permanently retained. beta-Labeled desmethylimipramine ([3H]DMI) is a nearly ideal flow marker. To obtain gamma- and positron-emitting markers, DMI was iodinated to form 2-iododesmethylimipramine (IDMI). IDMI was more lipophilic than DMI. In isolated saline-perfused rabbit hearts its transorgan extraction was greater than 99%; and retention was greater than 98% at 5 min at mean flows of up to 3.5 ml X g-1 X min-1. During washout, the fractional escape rate was less than 0.1% X min-1 and was independent of flow. In isolated blood-perfused rabbit hearts, extraction was still 98%, but retention was as low as 86% after 5 min at a flow of 1.6 ml X g-1 X min-1. The fractional escape rate was up to 2% X min-1 but independent of flow. Despite this relatively rapid loss, regional IDMI deposition remains proportional to regional flow for many minutes. Therefore IDMI is useful as an externally detectable "molecular microsphere" for myocardial flow imaging in vivo.


Author(s):  
Zheyong Li ◽  
Yajun Yuan ◽  
Lin Ma ◽  
Yihui Zhang ◽  
Hongwei Jiang ◽  
...  

Selenium (Se) is an essential and crucial micronutrient for humans and animals, but excessive Se brings negativity and toxicity. The adsorption and oxidation of Se(IV) on Mn-oxide surfaces are important processes for understanding the geochemical fate of Se and developing engineered remediation strategies. In this study, the characterization of simultaneous adsorption, oxidation, and desorption of Se(IV) on δ-MnO2 mineral was carried out using stirred-flow reactors. About 9.5% to 25.3% of Se(IV) was oxidized to Se(VI) in the stirred-flow system in a continuous and slow process, with the kinetic rate constant k of 0.032 h−1, which was significantly higher than the apparent rate constant of 0.0014 h−1 obtained by the quasi-level kinetic fit of the batch method. The oxidation reaction was driven by proton concentration, and its rate also depended on the Se(IV) influent concentration, flow rate, and δ-MnO2 dosage. During the reaction of Se(IV) and δ-MnO2, Mn(II) was produced and adsorbed strongly on Mn oxide surfaces, which was evidenced by the total reflectance Fourier transform infrared (ATR-FTIR) results. The X-ray photoelectron spectroscopy (XPS) data indicated that the reaction of Se(VI) on δ-MnO2 produced Mn(III) as the main product. These results contribute to a deeper understanding of the interface chemical process of Se(IV) with δ-MnO2 in the environment.


Symmetry ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 524
Author(s):  
Philip Pietrek ◽  
Manfred Kraut ◽  
Roland Dittmeyer

Immobilized multi-enzyme cascades are increasingly used in microfluidic devices. In particular, their application in continuous flow reactors shows great potential, utilizing the benefits of reusability and control of the reaction conditions. However, capitalizing on this potential is challenging and requires detailed knowledge of the investigated system. Here, we show the application of computational methods for optimization with multi-level reactor design (MLRD) methodology based on the underlying physical and chemical processes. We optimize a stereoselective reduction of a diketone catalyzed by ketoreductase (Gre2) and Nicotinamidadenindinukleotidphosphat (NADPH) cofactor regeneration with glucose dehydrogenase (GDH). Both enzymes are separately immobilized on magnetic beads forming a packed bed within the microreactor. We derive optimal reactor feed concentrations and enzyme ratios for enhanced performance and a basic economic model in order to maximize the techno-economic performance (TEP) for the first reduction of 5-nitrononane-2,8-dione.


Sign in / Sign up

Export Citation Format

Share Document