Environmental stimuli-sensitive chitosan nanocarriers in therapeutics

2022 ◽  
pp. 189-209
Author(s):  
Sarjana Raikwar ◽  
Ankit Jain ◽  
Shivani Saraf ◽  
Ankita Tiwari ◽  
Pritish Kumar Panda ◽  
...  
2008 ◽  
Vol 131 (2) ◽  
pp. 128-136 ◽  
Author(s):  
Changhong Zhang ◽  
Kejia Zhao ◽  
Tianyi Hu ◽  
Xiaofeng Cui ◽  
Nathan Brown ◽  
...  

Author(s):  
Gore S. A. ◽  
Gholve S. B. ◽  
Savalsure S. M. ◽  
Ghodake K. B. ◽  
Bhusnure O. G. ◽  
...  

Smart polymers are materials that respond to small external stimuli. These are also referred as stimuli responsive materials or intelligent materials. Smart polymers that can exhibit stimuli-sensitive properties are becoming important in many commercial applications. These polymers can change shape, strength and pore size based on external factors such as temperature, pH and stress. The stimuli include salt, UV irradiation, temperature, pH, magnetic or electric field, ionic factors etc. Smart polymers are very promising applicants in drug delivery, tissue engineering, cell culture, gene carriers, textile engineering, oil recovery, radioactive wastage and protein purification. The study is focused on the entire features of smart polymers and their most recent and relevant applications. Water soluble polymers with tunable lower critical solution temperature (LCST) are of increasing interest for biological applications such as cell patterning, smart drug release, DNA sequencing etc.


Author(s):  
Mazaher Ahmadi ◽  
Tayyebeh Madrakian ◽  
Arash Ghoorchian ◽  
Mahdie Kamalabadi ◽  
Abbas Afkhami

Antibiotics ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 248
Author(s):  
Marta O. Teixeira ◽  
Joana C. Antunes ◽  
Helena P. Felgueiras

In the last decades, much research has been done to fasten wound healing and target-direct drug delivery. Hydrogel-based scaffolds have been a recurrent solution in both cases, with some reaching already the market, even though their mechanical stability remains a challenge. To overcome this limitation, reinforcement of hydrogels with fibers has been explored. The structural resemblance of fiber–hydrogel composites to natural tissues has been a driving force for the optimization and exploration of these systems in biomedicine. Indeed, the combination of hydrogel-forming techniques and fiber spinning approaches has been crucial in the development of scaffolding systems with improved mechanical strength and medicinal properties. In this review, a comprehensive overview of the recently developed fiber–hydrogel composite strategies for wound healing and drug delivery is provided. The methodologies employed in fiber and hydrogel formation are also highlighted, together with the most compatible polymer combinations, as well as drug incorporation approaches creating stimuli-sensitive and triggered drug release towards an enhanced host response.


2020 ◽  
Vol 22 (1) ◽  
pp. 152
Author(s):  
Dorota Dabrowska ◽  
Justyna Mozejko-Ciesielska ◽  
Tomasz Pokój ◽  
Slawomir Ciesielski

Pseudomonas putida’s versatility and metabolic flexibility make it an ideal biotechnological platform for producing valuable chemicals, such as medium-chain-length polyhydroxyalkanoates (mcl-PHAs), which are considered the next generation bioplastics. This bacterium responds to environmental stimuli by rearranging its metabolism to improve its fitness and increase its chances of survival in harsh environments. Mcl-PHAs play an important role in central metabolism, serving as a reservoir of carbon and energy. Due to the complexity of mcl-PHAs’ metabolism, the manner in which P. putida changes its transcriptome to favor mcl-PHA synthesis in response to environmental stimuli remains unclear. Therefore, our objective was to investigate how the P. putida KT2440 wild type and mutants adjust their transcriptomes to synthesize mcl-PHAs in response to nitrogen limitation when supplied with sodium gluconate as an external carbon source. We found that, under nitrogen limitation, mcl-PHA accumulation is significantly lower in the mutant deficient in the stringent response than in the wild type or the rpoN mutant. Transcriptome analysis revealed that, under N-limiting conditions, 24 genes were downregulated and 21 were upregulated that were common to all three strains. Additionally, potential regulators of these genes were identified: the global anaerobic regulator (Anr, consisting of FnrA, Fnrb, and FnrC), NorR, NasT, the sigma54-dependent transcriptional regulator, and the dual component NtrB/NtrC regulator all appear to play important roles in transcriptome rearrangement under N-limiting conditions. The role of these regulators in mcl-PHA synthesis is discussed.


Author(s):  
Lev Levintov ◽  
Harish Vashisth

Ribonucleic acid (RNA) molecules are known to undergo conformational changes in response to various environmental stimuli including temperature, pH, and ligands. In particular, viral RNA molecules are a key example...


Sign in / Sign up

Export Citation Format

Share Document