Molecular karyotyping

Cytogenomics ◽  
2021 ◽  
pp. 73-85
Author(s):  
Anja Weise ◽  
Thomas Liehr
2016 ◽  
Vol 91 (1) ◽  
pp. 73-78 ◽  
Author(s):  
J. Sachwitz ◽  
R. Meyer ◽  
G. Fekete ◽  
S. Spranger ◽  
A. Matulevičienė ◽  
...  

2018 ◽  
Vol 2018 ◽  
pp. 1-6
Author(s):  
Géraldine Pairet ◽  
Gaëlle Tilman ◽  
Rafaël Sciot ◽  
Thomas Schubert ◽  
Vasiliki Perlepe ◽  
...  

We report a case of multiple myoepithelioma with synchronous bone and soft tissue tumors, associated with a new genomic alteration of the LPP locus. The lesions occurred in the foot by presenting one lump in the plantar soft tissue, and three lesions were detected in the calcaneus and in the navicular bone. All tumors showed the double immunophenotype of epithelial markers and S100 protein expression. No rearrangement of the EWSR1 and FUS loci was detected as reported in myoepitheliomas. However, molecular karyotyping detected an unbalanced rearrangement of the LPP locus, not involving the HMGA2 locus, which is the most frequent translocation partner observed in benign mesenchymal tumors such as lipomas (of soft tissue as well as parosteal) and pulmonary chondroid hamartoma.


2018 ◽  
Vol 3 (1) ◽  
pp. 147-153 ◽  
Author(s):  
Ken C. Pang ◽  
Debi Feldman ◽  
Ralph Oertel ◽  
Michelle Telfer

2021 ◽  
Vol 36 (Supplement_1) ◽  
Author(s):  
D Zhigalina ◽  
N Skryabin ◽  
O Kanbekova ◽  
V Artyukhova ◽  
A Svetlakov ◽  
...  

Abstract Study question Does the molecular karyotype of the cell-free DNA (cfDNA) from the blastocyst fluid (BF) can predict the efficiency of self-correction of karyotype of preimplantation embryo? Summary answer Detection of aneuploidies in the BF potentially can point out on effective self-correction of blastocyst karyotype and consequently on high developmental potential of mosaic embryos. What is known already Correction of aneuploidies in the preimplantation embryos can be provided by several mechanisms, including apoptosis. The predominant death of aneuploid cells was demonstrated in mouse embryos (Bolton, 2016). A positive correlation was also shown between the concentration of cfDNA from the BF of human blastocyst and the morphology of the embryo, as well as between the activity of caspase–3 and the concentration of cfDNA (Rule, 2018). The incidence of failed amplification after WGA being significantly higher among euploid blastocysts (Magli, 2019). The capacity of abnormal cells extruding into the BF would be related to the embryo development potential (Gianaroli, 2019). Study design, size, duration This is a prospective observational study of thirty-one Day 5 human blastocysts. Cryopreserved blastocysts were received after treatment cycles at the IVF Center with informed consent obtained from couples. The average age of 15 women was 32.25±5 years. The morphological characteristics of blastocysts were estimated in accordance with the Gardner classification (Gardner, Schoolcraft, 1999). The procedure of BF aspiration and trophectoderm (TE) and ICM cells separation of the blastocysts was previously described (Tsuiko, 2018). Participants/materials, setting, methods WGA was performed by PicoPLEX kit (Rubicon Genomics, USA) or REPLI-g Mini kit (Qiagen) according to manufacturer’s protocols. The DNA of the BF, ICM and TE were analyzed separately using cCGH, aCGH and NGS. SurePrint G3 Human CGH Microarrays (8x60K, Agilent Technologies) were used according to the manufacturer’s recommendations. Image analysis was done using ISIS (v.5.5) (Metasystems) and Agilent CytoGenomics Software (v.3). VeriSeq™ PGS Kit - MiSeq® System (Illumina) was used for NGS. Main results and the role of chance Molecular karyotypes of all three samples - BF, ICM and TE, were obtained for 23 (74.2%) blastocysts. A correlation between the woman’s age and the number of aneuploidies in cfDNA (p = 0.0009) was found. A positive correlation may indicate that the number of aneuploidies in the embryonic cells increases with the age of a woman, however, the embryonic karyotype undergoes self-correcting through the elimination of aneuploid cells. It was noted that well-developing blastocysts (groups 4–5, according to Gardner’s classification) had fewer aneuploidies in ICM (p = 0.0141) and TE (p = 0.0436). In contrast, there was a tendency to an increase in the number of aneuploidies in the BF during blastocysts transition from stage 3 to 5 (p = 0.3542). We assessed the relationship between the number of aneuploidies in groups of blastocysts with different characteristics of ICM (groups “A” and “B” according to Gardner’s classification). These groups significantly differ in the number of aneuploidies in cfDNA (p = 0.0352), although the statistically significant differences between the number of aneuploidies in ICM (p = 0.5992) and in TE (p = 0.5934) was not detected. Thus, higher-quality embryos in terms of ICM morphology contain more abnormalities in the BF, since in this group the elimination of aneuploid cells is more efficient. Limitations, reasons for caution The number of embryos is limited in this study. More comprehensive studies are required to confirm the observed tendency. Wider implications of the findings: Aneuploid cells elimination can be a cause of increasing cfDNA concentration in the BF, which may be a marker of the viability of mosaic embryos when it is necessary to decide on mosaic embryo transfer. This study was supported by the RFBR (15–04–08265) and by the RSF (20–74–00064). Trial registration number Not applicable


2020 ◽  
Vol 21 (21) ◽  
pp. 8247
Author(s):  
Alina Christine Hilger ◽  
Gabriel Clemens Dworschak ◽  
Heiko Martin Reutter

The treatment of major birth defects are key concerns for child health. Hitherto, for the majority of birth defects, the underlying cause remains unknown, likely to be heterogeneous. The implicated mortality and/or reduced fecundity in major birth defects suggest a significant fraction of mutational de novo events among the affected individuals. With the advent of systematic array-based molecular karyotyping, larger cohorts of affected individuals have been screened over the past decade. This review discusses the identification of disease-causing copy-number variations (CNVs) among individuals with different congenital malformations. It highlights the differences in findings depending on the respective congenital malformation. It looks at the differences in findings of CNV analysis in non-isolated complex congenital malformations, associated with central nervous system malformations or intellectual disabilities, compared to isolated single organ-system malformations. We propose that the more complex an organ system is, and the more genes involved during embryonic development, the more likely it is that mutational de novo events, comprising CNVs, will confer to the expression of birth defects of this organ system.


2013 ◽  
Vol 100 (3) ◽  
pp. S311
Author(s):  
M.K. Maisenbacher ◽  
D.M. Clark ◽  
E. Cheung ◽  
B. Pettersen ◽  
R. Lathi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document