Pulmonary Pathophysiology and Lung Mechanics in Anesthesiology

2022 ◽  
pp. 66-87
Author(s):  
Jamie L. Sparling ◽  
Marcos F. Vidal Melo
Keyword(s):  
2012 ◽  
Author(s):  
Andreas Fahlman ◽  
Bill Van Bonn ◽  
Stephen Loring

Critical Care ◽  
2021 ◽  
Vol 25 (1) ◽  
Author(s):  
Rui Shi ◽  
Christopher Lai ◽  
Jean-Louis Teboul ◽  
Martin Dres ◽  
Francesca Moretto ◽  
...  

Abstract Background In acute respiratory distress syndrome (ARDS), extravascular lung water index (EVLWi) and pulmonary vascular permeability index (PVPI) measured by transpulmonary thermodilution reflect the degree of lung injury. Whether EVLWi and PVPI are different between non-COVID-19 ARDS and the ARDS due to COVID-19 has never been reported. We aimed at comparing EVLWi, PVPI, respiratory mechanics and hemodynamics in patients with COVID-19 ARDS vs. ARDS of other origin. Methods Between March and October 2020, in an observational study conducted in intensive care units from three university hospitals, 60 patients with COVID-19-related ARDS monitored by transpulmonary thermodilution were compared to the 60 consecutive non-COVID-19 ARDS admitted immediately before the COVID-19 outbreak between December 2018 and February 2020. Results Driving pressure was similar between patients with COVID-19 and non-COVID-19 ARDS, at baseline as well as during the study period. Compared to patients without COVID-19, those with COVID-19 exhibited higher EVLWi, both at the baseline (17 (14–21) vs. 15 (11–19) mL/kg, respectively, p = 0.03) and at the time of its maximal value (24 (18–27) vs. 21 (15–24) mL/kg, respectively, p = 0.01). Similar results were observed for PVPI. In COVID-19 patients, the worst ratio between arterial oxygen partial pressure over oxygen inspired fraction was lower (81 (70–109) vs. 100 (80–124) mmHg, respectively, p = 0.02) and prone positioning and extracorporeal membrane oxygenation (ECMO) were more frequently used than in patients without COVID-19. COVID-19 patients had lower maximal lactate level and maximal norepinephrine dose than patients without COVID-19. Day-60 mortality was similar between groups (57% vs. 65%, respectively, p = 0.45). The maximal value of EVLWi and PVPI remained independently associated with outcome in the whole cohort. Conclusion Compared to ARDS patients without COVID-19, patients with COVID-19 had similar lung mechanics, but higher EVLWi and PVPI values from the beginning of the disease. This was associated with worse oxygenation and with more requirement of prone positioning and ECMO. This is compatible with the specific lung inflammation and severe diffuse alveolar damage related to COVID-19. By contrast, patients with COVID-19 had fewer hemodynamic derangement. Eventually, mortality was similar between groups. Trial registration number and date of registration ClinicalTrials.gov (NCT04337983). Registered 30 March 2020—Retrospectively registered, https://clinicaltrials.gov/ct2/show/NCT04337983.


Author(s):  
Jianli Li ◽  
Saixian Ma ◽  
Xiujie Chang ◽  
Songxu Ju ◽  
Meng Zhang ◽  
...  

AbstractThe study aimed to investigate the efficacy of PCV-VG combined with individual PEEP during laparoscopic surgery in the Trendelenburg position. 120 patients were randomly divided into four groups: VF group (VCV plus 5cmH2O PEEP), PF group (PCV-VG plus 5cmH2O PEEP), VI group (VCV plus individual PEEP), and PI group (PCV-VG plus individual PEEP). Pmean, Ppeak, Cdyn, PaO2/FiO2, VD/VT, A-aDO2 and Qs/Qt were recorded at T1 (15 min after the induction of anesthesia), T2 (60 min after pneumoperitoneum), and T3 (5 min at the end of anesthesia). The CC16 and IL-6 were measured at T1 and T3. Our results showed that the Pmean was increased in VI and PI group, and the Ppeak was lower in PI group at T2. At T2 and T3, the Cdyn of PI group was higher than that in other groups, and PaO2/FiO2 was increased in PI group compared with VF and VI group. At T2 and T3, A-aDO2 of PI and PF group was reduced than that in other groups. The Qs/Qt was decreased in PI group compared with VF and VI group at T2 and T3. At T2, VD/VT in PI group was decreased than other groups. At T3, the concentration of CC16 in PI group was lower compared with other groups, and IL-6 level of PI group was decreased than that in VF and VI group. In conclusion, the patients who underwent laparoscopic surgery, PCV-VG combined with individual PEEP produced favorable lung mechanics and oxygenation, and thus reducing inflammatory response and lung injury.Clinical Trial registry: chictr.org. identifier: ChiCTR-2100044928


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Seongsu Kim ◽  
Soo Jung Park ◽  
Sang Beom Nam ◽  
Suk-Won Song ◽  
Yeonseung Han ◽  
...  

AbstractDexmedetomidine has emerged as a promising organ protective agent. We performed prospective randomized placebo-controlled trial investigating effects of perioperative dexmedetomidine infusion on pulmonary function following thoracic aortic surgery with cardiopulmonary bypass and moderate hypothermic circulatory arrest. Fifty-two patients were randomized to two groups: the dexmedetomidine group received 1 µg/kg of dexmedetomidine over 20 min after induction of anesthesia, followed by 0.5 µg/kg/h infusion until 12 h after aortic cross clamp (ACC)-off, while the control group received the same volume of normal saline. The primary endpoints were oxygenation indices including arterial O2 partial pressure (PaO2) to alveolar O2 partial pressure ratio (a/A ratio), (A–a) O2 gradient, PaO2/FiO2 and lung mechanics including peak inspiratory and plateau pressures and compliances, which were assessed after anesthesia induction, 1 h, 6 h, 12 h, and 24 h after ACC-off. The secondary endpoints were serum biomarkers including interleukin-6, tumor necrosis factor-α, superoxide dismutase, and malondialdehyde (MDA). As a result, dexmedetomidine did not confer protective effects on the lungs, but inhibited elevation of serum MDA level, indicative of anti-oxidative stress property, and improved urine output and lower requirements of vasopressors.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 431
Author(s):  
Matthias Otto ◽  
Jörg Krebs ◽  
Peter Welker ◽  
René Holm ◽  
Manfred Thiel ◽  
...  

Aerosol therapy in patients suffering from acute respiratory distress syndrome (ARDS) has so far failed in improving patients’ outcomes. This might be because dependent lung areas cannot be reached by conventional aerosols. Due to their physicochemical properties, semifluorinated alkanes (SFAs) could address this problem. After induction of ARDS, 26 pigs were randomized into three groups: (1) control (Sham), (2) perfluorohexyloctane (F6H8), and (3) F6H8-ibuprofen. Using a nebulization catheter, (2) received 1 mL/kg F6H8 while (3) received 1 mL/kg F6H8 with 6 mg/mL ibuprofen. Ibuprofen plasma and lung tissue concentration, bronchoalveolar lavage (BAL) fluid concentration of TNF-α, IL-8, and IL-6, and lung mechanics were measured. The ibuprofen concentration was equally distributed to the dependent parts of the right lungs. Pharmacokinetic data demonstrated systemic absorption of ibuprofen proofing a transport across the alveolo-capillary membrane. A significantly lower TNF-α concentration was observed in (2) and (3) when compared to the control group (1). There were no significant differences in IL-8 and IL-6 concentrations and lung mechanics. F6H8 aerosol seemed to be a suitable carrier for pulmonary drug delivery to dependent ARDS lung regions without having negative effects on lung mechanics.


1981 ◽  
Vol 50 (3) ◽  
pp. 650-657 ◽  
Author(s):  
N. J. Douglas ◽  
G. B. Drummond ◽  
M. F. Sudlow

In six normal subjects forced expiratory flow rates increased progressively with increasing degrees of chest strapping. In nine normal subjects forced expiratory flow rates increased with the time spent breathing with expiratory reserve volume 0.5 liters above residual volume, the increase being significant by 30 s (P less than 0.01), and flow rates were still increasing at 2 min, the longest time the subjects could breathe at this lung volume. The increase in flow after low lung volume breathing (LLVB) was similar to that produced by strapping. The effect of LLVB was diminished by the inhalation of the atropinelike drug ipratropium. Quasistatic recoil pressures were higher following strapping and LLVB than on partial or maximal expiration, but the rise in recoil pressure was insufficient to account for all the observed increased in maximum flow. We suggest that the effects of chest strapping are due to LLVB and that both cause bronchodilatation.


1986 ◽  
Vol 61 (10) ◽  
pp. 1020-1023 ◽  
Author(s):  
A Greenough ◽  
B G Loftus ◽  
J Pool ◽  
J F Price
Keyword(s):  

2007 ◽  
Vol 104 (3) ◽  
pp. 631-637 ◽  
Author(s):  
Shirley Moreira Burburan ◽  
Debora Gon??alves Xisto ◽  
Halina Cidrini Ferreira ◽  
Douglas dos Reis Riva ◽  
Giovanna Marcella Cavalcante Carvalho ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document