Ensemble Monte Carlo calculation of electron impact ionization coefficients in bulk Ga0.5In0.5P using a k-dependent transition rate formulation

Author(s):  
Yang Wang ◽  
Kevin F. Brennan
2000 ◽  
Vol 622 ◽  
Author(s):  
E. Bellotti ◽  
M. Farahmand ◽  
H.-E Nilsson ◽  
K. F. Brennan ◽  
P. P. Ruden

ABSTRACTWe present Monte Carlo based calculations of transport parameters useful in the simulation of III-nitride and SiC based devices. The calculations are performed using a full band ensemble Monte Carlo model that includes numerical formulations of the phonon scattering rates and impact ionization transition rates. Calculations are made for the wurtzite and zincblende phases of GaN, the wurtzite phase of InN, and the 3C (cubic) and 4H phases of SiC. The basic transport parameters determined are saturation drift velocity, and the ionization coefficients as a function of applied electric field. Results from the various materials are finally compared.


1995 ◽  
Vol 395 ◽  
Author(s):  
J. Kolnik ◽  
I.H. Oguzman ◽  
K.F. Brennan ◽  
R. Wang ◽  
P.P. Ruden

ABSTRACTIn this paper, we present ensemble Monte Carlo based calculations of electron initiated impact ionization in bulk zincblende GaN using a wavevector dependent formulation of the interband impact ionization transition rate. These are the first reported estimates, either theoretical or experimental, of the impact ionization rates in GaN. The transition rate is determined from Fermi’s golden rule for a two-body screened Coulomb interaction using a numerically determined dielectric function as well as by numerically integrating over all of the possible final states. The Monte Carlo simulator includes the full details of the first four conduction bands derived from an empirical pseudopotential calculation as well as all of the relevant phonon scattering mechanisms. It is found that the ionization rate has a relatively "soft" threshold.


Sign in / Sign up

Export Citation Format

Share Document