Assessing the Quality of Renewable Energy Projects Using Fuzzy Logic

Author(s):  
Isabel Ferraris ◽  
Arturo Bignoli ◽  
Carlos V.M. Labriola
Forests ◽  
2020 ◽  
Vol 11 (12) ◽  
pp. 1360
Author(s):  
Andres B. Espejo ◽  
Maria Catalina Becerra-Leal ◽  
Naikoa Aguilar-Amuchastegui

Reducing deforestation and forest degradation presents a climate-change mitigation opportunity that is critical to meeting the Paris Agreement goals, and to achieving reductions in the atmospheric concentrations of greenhouse gases (GHGs). Reducing Emissions from Deforestation and Forest Degradation (REDD) provides developing countries with results-based financial incentives for reducing deforestation and forest degradation through either non-market payments (payments without generation of carbon credits), or market-based mechanisms (carbon credits). REDD credits have been recently accepted to be used in offsetting programs (e.g., CORSIA) and are being considered under Article 6. However, various publications have questioned whether carbon credits from REDD should be accepted under market-based mechanisms, and have identified issues regarding their environmental integrity and their ability to offset emissions from other sectors. In recent years, REDD implementation has moved from the project level to the national or subnational (jurisdictional) level, and is addressing some of the concerns that have been raised for project-level interventions regarding the robustness of baselines and leakage, for example. In this paper we compare the environmental integrity of credits from REDD programs with that from on-grid renewable energy projects by examining aspects related to permanence, additionality, baselines, uncertainty, and leakage. We show that the environmental integrity of emission reductions sourced from REDD programs has unique strengths, and that those sourced from renewable energy projects have weaknesses of their own. Probably due to a lack of understanding of the respective weaknesses and strengths of these two sources of credits, the emission reductions from REDD programs have been historically questioned and subjected to a level of scrutiny that has not been made with emission reductions from other sectors, such as renewable energy projects. Recognizing the strengths and weaknesses of emission reductions from both types should help decision makers and carbon standards recognize the high quality of emission reductions from REDD programs, and rationalize the current requirements or restrictions imposed.


2006 ◽  
Vol 17 (4) ◽  
pp. 57-64 ◽  
Author(s):  
J Foster-Pedley ◽  
H Hertzog

This study analyses empirical qualitative data collected from key stakeholders in the renewable energy industry in South Africa. As a step on the path towards developing better success in financing for renewable energy entrepreneurs, a financing framework is proposed and used to create a holistic view of the financing process in the renewable energy sector. It allows stakeholders to get an understanding of all the motives, barriers, sources of capital and possible destinations of capital in one system. Many good reasons exist for South Africa to invest in renewable energy with motives dominated by environmental concerns, diversity of supply, job creation and economic development. Internationally, investment in renewable energy projects has been growing despite a significant slump in overall global investment trends. In a decentralised business model, smaller renewable energy based businesses will continue to have difficulty in raising finance in South Africa. Key barriers include the high price of energy and equipment resulting in poor profitability, the reliability and quality of government policy, a lack of awareness and experience and a lack of innovative financing solutions. The study finds there are many expectations for government to address the needs of the industry within the context of its current regulated status. There appears to be a preference for demand side interventions, which rely on levies, subsidies and tax incentives. This paper strives to offer new ways of looking at the financing problems currently being experienced in the industry and proposes an innovative framework to assist the stakeholders in the industry in structuring financing for renewable energy ventures.


2019 ◽  
Vol 3 (1) ◽  
pp. 1-12
Author(s):  
Lauren K. D’Souza ◽  
William L. Ascher ◽  
Tanja Srebotnjak

Native American reservations are among the most economically disadvantaged regions in the United States; lacking access to economic and educational opportunities that are exacerbated by “energy insecurity” due to insufficient connectivity to the electric grid and power outages. Local renewable energy sources such as wind, solar, and biomass offer energy alternatives but their implementation encounters barriers such as lack of financing, infrastructure, and expertise, as well as divergent attitudes among tribal leaders. Biomass, in particular, could be a source of stable base-load power that is abundant and scalable in many rural communities. This case study examines the feasibility of a biomass energy plant on the Cocopah reservation in southwestern Arizona. It considers feedstock availability, cost and energy content, technology options, nameplate capacity, discount and interest rates, construction, operation and maintenance (O&M) costs, and alternative investment options. This study finds that at current electricity prices and based on typical costs for fuel, O&M over 30 years, none of the tested scenarios is presently cost-effective on a net present value (NPV) basis when compared with an alternative investment yielding annual returns of 3% or higher. The technology most likely to be economically viable and suitable for remote, rural contexts—a combustion stoker—resulted in a levelized costs of energy (LCOE) ranging from US$0.056 to 0.147/kWh. The most favorable scenario is a combustion stoker with an estimated NPV of US$4,791,243. The NPV of the corresponding alternative investment is US$7,123,380. However, if the tribes were able to secure a zero-interest loan to finance the plant’s installation cost, the project would be on par with the alternative investment. Even if this were the case, the scenario still relies on some of the most optimistic assumptions for the biomass-to-power plant and excludes abatement costs for air emissions. The study thus concludes that at present small-scale, biomass-to-energy projects require a mix of favorable market and local conditions as well as appropriate policy support to make biomass energy projects a cost-competitive source of stable, alternative energy for remote rural tribal communities that can provide greater tribal sovereignty and economic opportunities.


2012 ◽  
Vol 9 (2) ◽  
pp. 53-57 ◽  
Author(s):  
O.V. Darintsev ◽  
A.B. Migranov

The main stages of solving the problem of planning movements by mobile robots in a non-stationary working environment based on neural networks, genetic algorithms and fuzzy logic are considered. The features common to the considered intellectual algorithms are singled out and their comparative analysis is carried out. Recommendations are given on the use of this or that method depending on the type of problem being solved and the requirements for the speed of the algorithm, the quality of the trajectory, the availability (volume) of sensory information, etc.


2021 ◽  
Vol 9 (8) ◽  
pp. 810
Author(s):  
Francisco X. Correia da Fonseca ◽  
Luís Amaral ◽  
Paulo Chainho

Ocean energy is a relevant source of clean renewable energy, and as it is still facing challenges related to its above grid-parity costs, tariffs intended to support in a structured and coherent way are of great relevance and potential impact. The logistics and marine operations required for installing and maintaining these systems are major cost drivers of marine renewable energy projects. Planning the logistics of marine energy projects is a highly complex and intertwined process, and to date, limited advances have been made in the development of decision support tools suitable for ocean energy farm design. The present paper describes the methodology of a novel, opensource, logistic and marine operation planning tool, integrated within DTOceanPlus suite of design tools, and responsible for producing logistic solutions comprised of optimal selections of vessels, port terminals, equipment, as well as operation plans, for ocean energy projects. Infrastructure selection logistic functions were developed to select vessels, ports, and equipment for specific projects. A statistical weather window model was developed to estimate operation delays due to weather. A vessel charter rate modeling approach, based on an in-house vessel database and industry experience, is described in detail. The overall operation assumptions and underlying operating principles of the statistical weather window model, maritime infrastructure selection algorithms, and cost modeling strategies are presented. Tests performed for a case study based a theoretical floating wave energy converter produced results in good agreement with reality.


Energies ◽  
2021 ◽  
Vol 14 (10) ◽  
pp. 2765
Author(s):  
Joanna Rakowska ◽  
Irena Ozimek

The deployment of renewable energy at the local level can contribute significantly to mitigating climate change, improving energy security and increasing social, economic and environmental benefits. In many countries local authorities play an important role in the local development, but renewable energy deployment is not an obligatory task for them. Hence there are two research questions: (1) Do local governments think investments in renewable energy (RE) are urgent and affordable within the local budgets? (2) How do they react to the public aid co-financing investments in renewable energy? To provide the answer we performed qualitative analysis and non-parametric tests of data from a survey of 252 local authorities, analysis of 292 strategies of local development and datasets of 1170 renewable energy projects co-financed by EU funds under operational programs 2007–2013 and 2014–2020 in Poland. Findings showed that local authorities’ attitudes were rather careful, caused by financial constraints of local budgets and the scope of obligatory tasks, which made renewable energy investments not the most urgent. Public aid was a factor significantly affecting local authorities’ behavior. It triggered local authorities’ renewable energy initiatives, increasing the number and scope of renewable energy investments as well cooperation with other municipalities and local communities. Despite this general trend, there were also considerable regional differences in local authorities’ renewable energy behavior.


Sign in / Sign up

Export Citation Format

Share Document