Large-Scale Blast Analysis of Reinforced Concrete with Advanced Constitutive Models on High Performance Computers

Author(s):  
Kent T. Danielson ◽  
Mark D. Adley ◽  
Stephen A. Akers ◽  
Photios P. Papados
Author(s):  
Alejandro Enfedaque ◽  
Marcos G. Alberti ◽  
Jaime C. Gálvez ◽  
Pedro Cabanas

Fibre reinforced concrete (FRC) has become an alternative for structural applications due its outstanding mechanical properties. The appearance of new types of fibres and the fibre cocktails that can be configured mixing them has created FRC that clearly exceed the minimum mechanical properties required in the standards. Consequently, in order to take full advantage of the contribution of the fibres in construction projects, it is of great interest to have constitutive models that simulate the behaviour of the materials. This study aimed to simulate the fracture behaviour of five types of FRC, three with steel hooked fibres, one with a combination of two types of steel fibres and one with a combination of polyolefin fibres and two types of steel fibres, by means of an inverse analysis based on the cohesive crack approach. The results of the numerical simulations defined the softening functions of each FRC formulation and have pointed out the synergies that are created through use of fibre cocktails. The information obtained might suppose a remarkable advance for designers using high-performance FRC in structural elements.


Materials ◽  
2020 ◽  
Vol 13 (18) ◽  
pp. 4210 ◽  
Author(s):  
Viviane Adam ◽  
Jan Bielak ◽  
Christian Dommes ◽  
Norbert Will ◽  
Josef Hegger

Many older bridges feature capacity deficiencies. This is mainly due to changes in code provisions which came along with stricter design rules and increasing traffic, leading to higher loads on the structure. To address capacity deficiencies of bridges, refined structural analyses with more detailed design approaches can be applied. If bridge assessment does not provide sufficient capacity, strengthening can be a pertinent solution to extend the bridge’s service lifetime. For numerous cases, applying an extra layer of textile-reinforced concrete (TRC) can be a convenient method to achieve the required resistance. Here, carbon fibre-reinforced polymer reinforcement together with a high-performance mortar was used within the scope of developing a strengthening layer for bridge deck slabs, called SMART-DECK. Due to the high tensile strength of the carbon and its resistance to corrosion, a thin layer with high strength and low additional dead load can be realised. While the strengthening effect of TRC for slabs under flexural loading has already been investigated several times, the presented test programme also covered increase in shear capacity, which is the other crucial failure mode to be considered in design. A total of 14 large-scale tests on TRC-strengthened slab segments were tested under static and cyclic loading. The experimental study revealed high increases in capacity for both bending and shear failure.


1996 ◽  
Vol 07 (03) ◽  
pp. 295-303 ◽  
Author(s):  
P. D. CODDINGTON

Large-scale Monte Carlo simulations require high-quality random number generators to ensure correct results. The contrapositive of this statement is also true — the quality of random number generators can be tested by using them in large-scale Monte Carlo simulations. We have tested many commonly-used random number generators with high precision Monte Carlo simulations of the 2-d Ising model using the Metropolis, Swendsen-Wang, and Wolff algorithms. This work is being extended to the testing of random number generators for parallel computers. The results of these tests are presented, along with recommendations for random number generators for high-performance computers, particularly for lattice Monte Carlo simulations.


Author(s):  
Valentin Cristea ◽  
Ciprian Dobre ◽  
Corina Stratan ◽  
Florin Pop

The architectural shift presented in the previous chapters towards high performance computers assembled from large numbers of commodity resources raises numerous design issues and assumptions pertaining to traceability, fault tolerance and scalability. Hence, one of the key challenges faced by high performance distributed systems is scalable monitoring of system state. The aim of this chapter is to realize a survey study of existing work and trends in distributed systems monitoring by introducing the involved concepts and requirements, techniques, models and related standardization activities. Monitoring can be defined as the process of dynamic collection, interpretation and presentation of information concerning the characteristics and status of resources of interest. It is needed for various purposes such as debugging, testing, program visualization and animation. It may also be used for general management activities, which have a more permanent and continuous nature (performance management, configuration management, fault management, security management, etc.). In this case the behavior of the system is observed and monitoring information is gathered. This information is used to make management decisions and perform the appropriate control actions on the system. Unlike monitoring which is generally a passive process, control actively changes the behavior of the managed system and it has to be considered and modeled separately. Monitoring proves to be an essential process to observe and improve the reliability and the performance of large-scale distributed systems.


2002 ◽  
Vol 1 (4) ◽  
pp. 403-420 ◽  
Author(s):  
D. Stanescu ◽  
J. Xu ◽  
M.Y. Hussaini ◽  
F. Farassat

The purpose of this paper is to demonstrate the feasibility of computing the fan inlet noise field around a real twin-engine aircraft, which includes the radiation of the main spinning modes from the engine as well as the reflection and scattering by the fuselage and the wing. This first-cut large-scale computation is based on time domain and frequency domain approaches that employ spectral element methods for spatial discretization. The numerical algorithms are designed to exploit high-performance computers such as the IBM SP4. Although the simulations could not match the exact conditions of the only available experimental data set, they are able to predict the trends of the measured noise field fairly well.


Sign in / Sign up

Export Citation Format

Share Document