Analysis of natural ventilation effect for an office building considering moisture absorption by materials

2002 ◽  
pp. 1199-1206
Author(s):  
Yoshida Harunori ◽  
Kono Tetsuya
Energies ◽  
2020 ◽  
Vol 13 (2) ◽  
pp. 406 ◽  
Author(s):  
Xiaoyu Ying ◽  
Yanling Wang ◽  
Wenzhe Li ◽  
Ziqiao Liu ◽  
Grace Ding

This paper presents a study of the effects of wind-induced airflow through the urban built layout pattern using statistical analysis. This study investigates the association between typically enclosed office building layout patterns and the wind environment. First of all, this study establishes an ideal site model of 200 m × 200 m and obtains four typical multi-story enclosed office building group layouts, namely the multi-yard parallel opening, the multi-yard returning shape opening, the overall courtyard parallel opening, and the overall courtyard returning shape opening. Then, the natural ventilation performance of different building morphologies is further evaluated via the computational fluid dynamics (CFD) simulation software Phoenics. This study compares wind speed distribution at an outdoor pedestrian height (1.5 m). Finally, the natural ventilation performance corresponding to the four layout forms is obtained, which showed that the outdoor wind environment of the multi-yard type is more comfortable than the overall courtyard type, and the degree of enclosure of the building group is related to the advantages and disadvantages of the outdoor wind environment. The quantitative relevance between building layout and wind environment is examined, according to which the results of an ameliorated layout proposal are presented and assessed by Phoenics. This research could provide a method to create a livable urban wind environment.


2013 ◽  
Vol 361-363 ◽  
pp. 833-844
Author(s):  
Chong Jie Wang ◽  
Wei Wei Liu

Indoor fresh air distribution, temperature stratification and temperature distribution are consider to be the essential indicators when comes to evaluation of the comfort level for internal ventilation environment, particularly for natural ventilated space as target office building. It can be identified that the targeting building has been well designed in the respect of natural ventilation strategies where both cross and stack strategies have been adopted, but it is also obvious that under combined buoyancy and wind driven mode alternative problems appears.


2019 ◽  
Vol 111 ◽  
pp. 04011
Author(s):  
Catalin Lungu ◽  
Florin Baltaretu

In this paper the authors describe a HVAC innovative system using an integrated greenhouse for heating and cooling an office building. The ventilation system allows natural (night) or mechanical ventilation and the passive cooling during the summer, including cold storage in the building structure and the PCM plywood and the refrigeration energy use during the day. Natural ventilation occurs when the wind or the Venturi effect, created by the « hat » that supports the photovoltaic panels, is strong enough; otherwise, a variable speed exhaust fan mounted on top of the building is used. The plants inside the greenhouse can produce O2 under certain conditions necessary for refreshing the ventilation air. The environment of the greenhouse allows air humidification naturally, without the use of humidifiers. If the greenhouse is sufficiently insulated in winter, it can be used in the ventilation process: the air intake from offices through the greenhouse, humidified and enriched in O2 (premixed, if necessary, with fresh air) reaches the general air treatment unit, and then sent back. The process is similar in the summer, but without recirculation, due to the humidity of the air extracted from offices. Stale air humidification enhances the thermal transfer process from the desiccant collector.


2019 ◽  
Vol 111 ◽  
pp. 01085
Author(s):  
Hiroshi Muramatsu ◽  
Tatsuo Nobe

In this study, an office building in Japan that incorporates energy-saving features and environmental technologies was investigated. This office building features a green façade, natural ventilation, a concrete slab with no suspended ceilings, and thermo-active building systems. Two airconditioning systems were installed in this building—a ceiling radiation air-conditioning system and a whole floor-blow off air conditioning system. In addition, a natural ventilation system was installed. We surveyed the heat flux of the ceiling surface and indoor thermal environment of this building from 2015 through 2016. The ceiling using the heat storage amount of concrete maintains a constant temperature in the workplace during as well as after office hours. We also performed detailed measurements of the heat flux of the ceiling surface and indoor thermal environment in the summer of 2017. The results showed that the ceiling radiation air-conditioning system provided a stable thermal environment. Furthermore, we report that making use of the thermal behavior of the skeleton improved the operation of the ceiling radiation airconditioning system.


Author(s):  
José Luis Fernández-Zayas ◽  
Juan Francisco Villa-Medina ◽  
Norberto Chargoy-del Valle ◽  
Miguel Ángel Porta-Gándara

2016 ◽  
Vol 1 (1) ◽  
pp. 348
Author(s):  
Nooriati Taib ◽  
Zalila Ali

One passive approach that can significantly reduce energy usage in high-rise buildings is through the creation of non-air conditioned spaces such as transitional spaces. Optimizing passive design would reduce wastage associated with the building’s energy consumption. The study measures the thermal comfort of three types of transitional spaces (sky court, balcony, and rooftop) in a high-rise office building. Based on the assessment of Physiological Equivalent Temperature (PET), the outcome showed significant differences in PET in all locations in both wet and dry season. The effectiveness of such area can be improved with the contributions of landscape, maximizing natural ventilation and day lighting where possible.© 2016. The Authors. Published for AMER ABRA by e-International Publishing House, Ltd., UK. Peer–review under responsibility of AMER (Association of Malaysian Environment-Behaviour Researchers), ABRA (Association of Behavioural Researchers on Asians) and cE-Bs (Centre for Environment-Behaviour Studies, Faculty of Architecture, Planning & Surveying, Universiti Teknologi MARA, Malaysia.Keywords: Thermal comfort; transitional spaces; high-rise; Physiological Equivalent Temperature


2014 ◽  
Vol 490-491 ◽  
pp. 1243-1253
Author(s):  
Li Ning Yang ◽  
Xiang Zhao Fu

This paper proposed HVAC engineer should simulate natural ventilation () of building based on the Ventilation Network Model (VNM) and software of loop pipe network hydraulic calculation and analysis of hydraulic conditions (LPNHHC) V1.0 which is developed by Chongqing University. It presents two indexes, which are requirement of ventilation in local building regulation () and thermal comfortable ventilation (), should be used to evaluate the design talent on building natural ventilation. We can say the building ventilation design meet the requirement under the premise of bigger than and simultaneously. Architecture, otherwise, needs to modify the building design according to the comments of HVAC engineer. HVAC engineer should design mechanical ventilation (MV) if natural ventilation really can not meet the requirement after modification. It, at last, shows a case study of office building in Chongqing in order to prove the method proposed in the paper. We conclude that ventilation network model can be used to evaluate the design effect of building natural ventilation.


2019 ◽  
Vol 6 (1) ◽  
Author(s):  
Marcel Schweiker ◽  
Michael Kleber ◽  
Andreas Wagner

AbstractData was collected in the field, from an office building located in Frankfurt, Germany, over the period of 4 years. The building was designed as a low-energy building and featured natural ventilation for individual control of air quality as well as buoyancy-driven night ventilation in combination with a central atrium as a passive cooling strategy. The monitored data include in total 116 data points related to outdoor and indoor environmental data, energy related data, and data related to occupancy and occupant behaviour. Data points representing a state were logged with the real timestamp of the event taking place, all other data points were recorded in 10 minute intervals. Data were collected in 17 cell offices with a size of ~20 m2, facing either east or west). Each office has one fixed and two operable windows, internal top light windows between office and corridor (to allow for night ventilation into the atrium) and sun protection elements (operated both manually and automatically). Each office is occupied by one or two persons.


Sign in / Sign up

Export Citation Format

Share Document