Air Flow Modelling of a Multi-Storey Office Building

2013 ◽  
Vol 361-363 ◽  
pp. 833-844
Author(s):  
Chong Jie Wang ◽  
Wei Wei Liu

Indoor fresh air distribution, temperature stratification and temperature distribution are consider to be the essential indicators when comes to evaluation of the comfort level for internal ventilation environment, particularly for natural ventilated space as target office building. It can be identified that the targeting building has been well designed in the respect of natural ventilation strategies where both cross and stack strategies have been adopted, but it is also obvious that under combined buoyancy and wind driven mode alternative problems appears.

2012 ◽  
Vol 229-231 ◽  
pp. 2411-2414
Author(s):  
Ya Xin Su ◽  
Xin Wan

The natural ventilation in a heating workshop with different horizontal arrangement of heat source was numerically simulated based on computational fluid dynamics (CFD) method. Realizable k- turbulent model was used to calculate the air flow and temperature distribution. Simulation results showed that the horizontal arrangement of the heat source in the workshop influenced heavily the air flow and temperature distribution. When the heat source was placed at the workshop centre, the heat distribution factor was minimal, the average air temperature at operation zone was lowest and the hot air exhausting velocity was highest, the air flow field and temperature distribution was reasonable for the natural ventilation. When the heat source was placed to be close to the air inlet opening, the fresh air would travel a short path and directly rise to exit and the fresh air did not reach to the right part of the workshop, leading to a possible accumulation of pollutant emission there. When the heat source was placed at the right side of the workshop, the benefit would be that the possible pollutant could be taken away by the air flow, however, the ventilation rate decreased.


2020 ◽  
Vol 17 (1) ◽  
pp. 78-86 ◽  
Author(s):  
Maher Dhahri ◽  
Hana Aouinet

Purpose The purpose of this study is to investigate air flow, temperature distribution and thermal confort in natural ventilation induced by solar chimney for different operating. Design/methodology/approach Numerical simulation is performed using a commercial computational fluid dynamics (CFD) package ANSYS CFX software to understand the effects of air temperature, air velocity and solar heat flux on the performance of the solar chimney and thermal comfort. The comfort level was evaluated using the air diffusion performance index (ADPI) according to ASHRAE (55-210). The flow was investigated at inclination angles 45° solar heat flux 550-750 W/m2 and in a solar chimney of 1.4 m length, 0.6 m width and 0.20 m air gab. Findings The numerical results from the present simulation were first validated with experimental data, which was used for the thermal comfort indexes calculation. The obtained results of the analysis showed that the used numerical technique could accurately predict air flow and temperature distribution in natural ventilated building using solar chimney; the air temperature, air velocity and solar heat flux have a significant impact on thermal comfort; the temperature of 19°C with velocity of 0.15 m.s−1 gives the best effective draft temperature (EDT) satisfy ASHRAE (55-210) criteria that V = 0.35 m.s−1 and EDT range between −1.7 and 1.1. Originality/value In the present paper, air flow, temperature distribution and thermal comfort inside a room equipped with inclined solar chimney were numerically investigated and analyzed. The commercial CFD package (CFX 15) is used. Calculations are carried out in an empty room without any human or mechanical activity and the numerical results are compared with measurement points.


2021 ◽  
Vol 21 (2) ◽  
pp. 67-87
Author(s):  
Marilia Ramalho Fontenelle ◽  
Leopoldo Eurico Gonçalves Bastos ◽  
Sylvie Lorente

Abstract Recent studies underline that simple and non-invasive retrofit solutions can recover natural ventilation potential in existing buildings under temperate climate. Nonetheless, the efficiency of these solutions in dense urban contexts under hot and humid climate remains unclear. This paper aims to evaluate the thermal comfort gains caused by natural ventilation when retrofitting an office building in downtown Rio de Janeiro. Computational Fluid Dynamics (CFD) and thermal simulations are carried out on Ansys CFX and Design builder to assess indoor air flow before and after retrofit. The diagnosis of the current scenario indicates that the surrounding buildings block a significant part of the wind flow, and occupants experience only a few hours of thermal comfort during the year, especially on lower floors. To increase indoor air flow, the fixed upper windows were transformed into pivot windows and kept open permanently. This measure increases the annual hours of thermal comfort by 0.5-35%, depending on the floor and the adaptive comfort model. These findings suggest that natural ventilation itself may not be sufficient to ensure occupants' comfort throughout the year under the investigated context.


2018 ◽  
Vol 49 ◽  
pp. 00026
Author(s):  
Tomasz Gaczoł

The paper is devoted to test results of air flow through natural ventilation supply-exhaust ducts in the rooms located on the upper floor of the building that were conducted in ANSYS Fluent software. Three types of solutions were selected for the tests: air inflow into the room through the air intake located at the basement level, air inflow through the window ventilator (although no longer used, this solution can be found in many existing residential buildings) and the natural ventilation system supported with the so-called “solar chimney” that is usually a glass superstructure, located on the roof of the building above the ventilation ducts. All simulations were conducted with an outdoor temperature of +3 degrees C. The indoor temperature is + 20 degrees C, considered to be the minimum thermal comfort level. The simulations concerned such issues as: pressure system inside the room and in the exhaust duct, distribution of air temperatures in the room, vector direction of air flow through supply and exhaust ducts and in the room. Tests conducted using a computer method of air flow analysis in ducts and in the analysed room indicate that the developed natural balanced ventilation system is a good solution, especially when building sealing is so common. In all cases presented, it meets the normative regulations and requirements for the ventilation air stream and the air exchange rate in the room. The paper (second part) describes test results concerning the room located on the upper floor of the building, i.e. with a long 9-meter long supply duct and a short 3-meter long exhaust duct.


Author(s):  
Elahe Mirabi ◽  
Nasrollahi Nazanin

<p>Designing urban facades is considered as a major factor influencing issues<br />such as natural ventilation of buildings and urban areas, radiations in the<br />urban canyon for designing low-energy buildings, cooling demand for<br />buildings in urban area, and thermal comfort in urban streets. However, so<br />far, most studies on urban topics have been focused on flat facades<br />without details of urban layouts. Hence, the effect of urban facades with<br />details such as the balcony and corbelling on thermal comfort conditions<br />and air flow behavior are discussed in this literature review. <strong>Aim</strong>: This<br />study was carried out to investigate the effective factors of urban facades,<br />including the effects of building configuration, geometry and urban<br />canyon’s orientation. <strong>Methodology and Results</strong>: According to the results,<br />the air flow behavior is affected by a wide range of factors such as wind<br />conditions, urban geometry and wind direction. Urban façade geometry<br />can change outdoor air flow pattern, thermal comfort and solar access.<br /><strong>Conclusion, significance and impact study</strong>: In particular, the geometry of<br />the facade, such as indentation and protrusion, has a significant effect on<br />the air flow and thermal behavior in urban facades and can enhance<br />outdoor comfort conditions. Also, Alternation in façade geometry can<br />affect pedestrians' comfort and buildings energy demands.</p>


Author(s):  
Farhang Tahmasebi ◽  
Yan Wang ◽  
Elizabeth Cooper ◽  
Daniel Godoy Shimizu ◽  
Samuel Stamp ◽  
...  

The Covid-19 outbreak has resulted in new patterns of home occupancy, the implications of which for indoor air quality (IAQ) and energy use are not well-known. In this context, the present study investigates 8 flats in London to uncover if during a lockdown, (a) IAQ in the monitored flats deteriorated, (b) the patterns of window operation by occupants changed, and (c) more effective ventilation patterns could enhance IAQ without significant increases in heating energy demand. To this end, one-year’s worth of monitored data on indoor and outdoor environment along with occupant use of windows has been used to analyse the impact of lockdown on IAQ and infer probabilistic models of window operation behaviour. Moreover, using on-site CO2 data, monitored occupancy and operation of windows, the team has calibrated a thermal performance model of one of the flats to investigate the implications of alternative ventilation strategies. The results suggest that despite the extended occupancy during lockdown, occupants relied less on natural ventilation, which led to an increase of median CO2 concentration by up to 300 ppm. However, simple natural ventilation patterns or use of mechanical ventilation with heat recovery proves to be very effective to maintain acceptable IAQ. Practical application: This study provides evidence on the deterioration of indoor air quality resulting from homeworking during imposed lockdowns. It also tests and recommends specific ventilation strategies to maintain acceptable indoor air quality at home despite the extended occupancy hours.


Sign in / Sign up

Export Citation Format

Share Document