Machine Learning and Data Science in the Oil and Gas Industry

2021 ◽  
Author(s):  
Zeeshan Tariq ◽  
Murtada Saleh Aljawad ◽  
Amjed Hasan ◽  
Mobeen Murtaza ◽  
Emad Mohammed ◽  
...  

AbstractThis study offered a detailed review of data sciences and machine learning (ML) roles in different petroleum engineering and geosciences segments such as petroleum exploration, reservoir characterization, oil well drilling, production, and well stimulation, emphasizing the newly emerging field of unconventional reservoirs. The future of data science and ML in the oil and gas industry, highlighting what is required from ML for better prediction, is also discussed. This study also provides a comprehensive comparison of different ML techniques used in the oil and gas industry. With the arrival of powerful computers, advanced ML algorithms, and extensive data generation from different industry tools, we see a bright future in developing solutions to the complex problems in the oil and gas industry that were previously beyond the grip of analytical solutions or numerical simulation. ML tools can incorporate every detail in the log data and every information connected to the target data. Despite their limitations, they are not constrained by limiting assumptions of analytical solutions or by particular data and/or power processing requirements of numerical simulators. This detailed and comprehensive study can serve as an exclusive reference for ML applications in the industry. Based on the review conducted, it was found that ML techniques offer a great potential in solving problems in almost all areas of the oil and gas industry involving prediction, classification, and clustering. With the generation of huge data in everyday oil and gas industry activates, machine learning and big data handling techniques are becoming a necessity toward a more efficient industry.


2020 ◽  
Author(s):  
Israel Guevara ◽  
David Ardila ◽  
Kevin Daza ◽  
Oscar Ovalle ◽  
Paola Pastor ◽  
...  

2021 ◽  
Author(s):  
Abdul Muqtadir Khan

Abstract With the advancement in machine learning (ML) applications, some recent research has been conducted to optimize fracturing treatments. There are a variety of models available using various objective functions for optimization and different mathematical techniques. There is a need to extend the ML techniques to optimize the choice of algorithm. For fracturing treatment design, the literature for comparative algorithm performance is sparse. The research predominantly shows that compared to the most commonly used regressors and classifiers, some sort of boosting technique consistently outperforms on model testing and prediction accuracy. A database was constructed for a heterogeneous reservoir. Four widely used boosting algorithms were used on the database to predict the design only from the output of a short injection/falloff test. Feature importance analysis was done on eight output parameters from the falloff analysis, and six were finalized for the model construction. The outputs selected for prediction were fracturing fluid efficiency, proppant mass, maximum proppant concentration, and injection rate. Extreme gradient boost (XGBoost), categorical boost (CatBoost), adaptive boost (AdaBoost), and light gradient boosting machine (LGBM) were the algorithms finalized for the comparative study. The sensitivity was done for a different number of classes (four, five, and six) to establish a balance between accuracy and prediction granularity. The results showed that the best algorithm choice was between XGBoost and CatBoost for the predicted parameters under certain model construction conditions. The accuracy for all outputs for the holdout sets varied between 80 and 92%, showing robust significance for a wider utilization of these models. Data science has contributed to various oil and gas industry domains and has tremendous applications in the stimulation domain. The research and review conducted in this paper add a valuable resource for the user to build digital databases and use the appropriate algorithm without much trial and error. Implementing this model reduced the complexity of the proppant fracturing treatment redesign process, enhanced operational efficiency, and reduced fracture damage by eliminating minifrac steps with crosslinked gel.


2021 ◽  
Author(s):  
Afungchwi Ronald Ngwashi ◽  
David O. Ogbe ◽  
Dickson O. Udebhulu

Abstract Data analytics has only recently picked the interest of the oil and gas industry as it has made data visualization much simpler, faster, and cost-effective. This is driven by the promising innovative techniques in developing artificial intelligence and machine-learning tools to provide sustainable solutions to ever-increasing problems of the petroleum industry activities. Sand production is one of these real issues faced by the oil and gas industry. Understanding whether a well will produce sand or not is the foundation of every completion job in sandstone formations. The Niger Delta Province is a region characterized by friable and unconsolidated sandstones, therefore it's more prone to sanding. It is economically unattractive in this region to design sand equipment for a well that will not produce sand. This paper is aimed at developing a fast and more accurate machine-learning algorithm to predict sanding in sandstone formations. A two-layered Artificial Neural Network (ANN) with back-propagation algorithm was developed using PYTHON programming language. The algorithm uses 11 geological and reservoir parameters that are associated with the onset of sanding. These parameters include depth, overburden, pore pressure, maximum and minimum horizontal stresses, well azimuth, well inclination, Poisson's ratio, Young's Modulus, friction angle, and shale content. Data typical of the Niger Delta were collected to validate the algorithm. The data was further split into a training set (70%) and a test set (30%). Statistical analyses of the data yielded correlations between the parameters and were plotted for better visualization. The accuracy of the ANN algorithm is found to depend on the number of parameters, number of epochs, and the size of the data set. For a completion engineer, the answer to the question of whether or not a well will require sand production control is binary-either a well will produce sand or it does not. Support vector machines (SVM) are known to be better suited as the machine-learning tools for binary identification. This study also presents a comparative analysis between ANN and SVM models as tools for predicting sand production. Analysis of the Niger Delta data set indicated that SVM outperformed ANN model even when the training data set is sparse. Using the 30% test set, ANN gives an accuracy, precision, recall, and F1 - Score of about 80% while the SVM performance was 100% for the four metrics. It is then concluded that machine learning tools such as ANN with back-propagation and SVM are simple, accurate, and easy-to-use tools for effectively predicting sand production.


2021 ◽  
Author(s):  
Rajeev Ranjan Sinha ◽  
Supriya Gupta ◽  
Praprut Songchitruksa ◽  
Saniya Karnik ◽  
Amey Ambade

Abstract Electrical Submersible Pump (ESP) systems efficiently pump high volumes of production fluids from the wellbore to the surface. They are extensively used in the oil and gas industry due to their adaptability, low maintenance, safety and relatively low environmental impact. They require specific operating conditions with respect to the power, fluid level and fluid content. Oilfield operation workflows often require extensive surveillance and monitoring by subject-matter experts (SMEs). Detecting issues like formation of unwanted gas and emulsions in ESPs requires constant analysis of downhole data by SMEs. The lack of adequate and accurate monitoring of the downhole pumps can lead to low efficiency, high lifting costs, and frequent repair and replacements. There are 3 workflows described in the paper which demonstrate that the maintenance costs of the ESPs can be significantly reduced, and production optimized with the augmentation of machine learning approaches typically unused in ESP surveillance and failure analysis.


2021 ◽  
Author(s):  
Ahmad Naufal Naufal ◽  
Samy Abdelhamid Samy ◽  
Nenisurya Hashim Nenisurya ◽  
Zaharuddin Muhammad Zaharuddin ◽  
Eddy Damsuri Eddy ◽  
...  

Abstract Equipment failure, unplanned downtime operation, and environmental damage cost represent critical challenges in overall oil and gas business from well reservoir identification and drilling strategy to production and processing. Identifying and managing the risks around assets that could fail and cause redundant and expensive downtime are the core of plant reliability in oil and gas industry. In the current digital era; there is an essential need of innovative data-driven solutions to address these challenges, especially, monitoring and diagnosis of plant equipment operations, recognize equipment failure; avoid unplanned downtime; repair costs and potential environmental damage; maintaining reliable production, and identifying equipment failures. Machine learning-artificial intelligence application is being studied to develop predictive maintenance (PdM) models as innovative analytics solution based on real-data streaming to get to an elevated level of situational intelligence to guide actions and provide early warnings of impending asset failure that previously remained undetected. This paper proposes novel machine learning predictive models based on extreme learning/support vector machines (ELM-SVM) to predict the time to failure (TTF) and when a plant equipment(s) will fail; so maintenance can be planned well ahead of time to minimize disruption. Proper visualization with deep-insights (training and validation) processes of the available mountains of historian and real-time data are carried out. Comparative studies of ELM-SVM techniques versus the most common physical-statistical regression techniques using available rotating equipment-compressors and time-failure mode data. Results are presented and it is promising to show that the new machine learning (ELM-SVM) techniques outperforms physical-statistics techniques with reliable and high accurate predictions; which have a high impact on the future ROI of oil and gas industry.


2021 ◽  
Vol 73 (02) ◽  
pp. 23-28
Author(s):  
Judy Feder

For an industry in which terms like “first ever,” “unparalleled,” “unprecedented,” and “novel” are often over-used to the point of losing their meaning, 2020 hit hard with the true meaning of those words as the COVID-19 pandemic exploded onto the world and disrupted almost everything about life as we knew it. The oil and gas industry, which had begun showing signs of recovery from a generational downturn, was hit particularly hard. Jobs were lost, companies shuttered, and supply chains upended. But the same combination of audacity and ingenuity that has driven the industry for over a century took hold quickly. Oil and gas people love - and need - to network, share ideas, transfer and apply technology, and gather intelligence. So, when in-person conferences, workshops, and tradeshows were suddenly canceled or indefinitely postponed, entities such as the Society of Petroleum Engineers scrambled to use digital technology to take those events online and make them virtual. While not a perfect replacement, virtual online events offer some unique advantages, as SPE technical directors pointed out in their annual roundup. Digitalization, long a controversial topic among many in the upstream sector, is now being called essential by the directors across the six SPE technical disciplines they lead. Automation is mentioned frequently in the directors’ comments as a growing contributor to efficiency and risk reduction. Capital discipline, balance sheet management, and cash flow are seen as crucial, as are collaboration (both internal and external) and value - ranging from core values to value-driven data, to provable, value-based outcomes. Agility and the ability to comply with environmental, social, and governance (ESG) criteria have taken on new importance. So has work - how and where we do it, and how we balance it with other aspects of life. Knowledge dissemination is considered more important than ever. Uncertainty continues to characterize the upstream sector, even more so than before the pandemic, but at least one thing is certain: The work of the industry, and the way in which people who comprise it work, is forever changed. The SPE technical disciplines and the directors who lead them are as follows. Completions - Terry Palisch, CARBO Ceramics Data Science and Engineering Analytics - Silviu Livescu, Baker Hughes Drilling - David Reid, NOV HSE and Sustainability - Annamaria Petrone, Eni Production and Facilities - Robert Pearson, Glynn Resources Reservoir - Erdal Ozkan, Colorado School of Mines Here, they reflect on a truly unprecedented year and share their outlooks for their disciplines going forward.


2021 ◽  
Author(s):  
Ayman Amer ◽  
Ali Alshehri ◽  
Hamad Saiari ◽  
Ali Meshaikhis ◽  
Abdulaziz Alshamrany

Abstract Corrosion under insulation (CUI) is a critical challenge that affects the integrity of assets where the oil and gas industry is not immune. Its severity arises due to its hidden nature as it can often times go unnoticed. CUI is stimulated, in principle, by moisture ingress through the insulation layers to the surface of the pipeline. This Artificial Intelligence (AI)-powered detection technology stemmed from an urgent need to detect the presence of these corrosion types. The new approach is based on a Cyber Physical (CP) system that maximizes the potential of thermographic imaging by using a Machine Learning application of Artificial Intelligence. In this work, we describe how common image processing techniques from infra-red images of assets can be enhanced using a machine learning approach allowing the detection of locations highly vulnerable to corrosion through pinpointing locations of CUI anomalies and areas of concern. The machine learning is examining the progression of thermal images, captured over time, corrosion and factors that cause this degradation are predicted by extracting thermal anomaly features and correlating them with corrosion and irregularities in the structural integrity of assets verified visually during the initial learning phase of the ML algorithm. The ML classifier has shown outstanding results in predicting CUI anomalies with a predictive accuracy in the range of 85 – 90% projected from 185 real field assets. Also, IR imaging by itself is subjective and operator dependent, however with this cyber physical transfer learning approach, such dependency has been eliminated. The results and conclusions of this work on real field assets in operation demonstrate the feasibility of this technique to predict and detect thermal anomalies directly correlated to CUI. This innovative work has led to the development of a cyber-physical that meets the demands of inspection units across the oil and gas industry, providing a real-time system and online assessment tool to monitor the presence of CUI enhancing the output from thermography technologies, using Artificial Intelligence (AI) and machine learning technology. Additional benefits of this approach include safety enhancement through non-contact online inspection and cost savings by reducing the associated scaffolding and downtime.


Sign in / Sign up

Export Citation Format

Share Document