scholarly journals Identifiability of linear compartmental models: The singular locus

2021 ◽  
pp. 102268
Author(s):  
Elizabeth Gross ◽  
Nicolette Meshkat ◽  
Anne Shiu
2020 ◽  
Vol 2020 (12) ◽  
Author(s):  
Mario Martone

Abstract We derive explicit formulae to compute the a and c central charges of four dimensional $$ \mathcal{N} $$ N = 2 superconformal field theories (SCFTs) directly from Coulomb branch related quantities. The formulae apply at arbitrary rank. We also discover general properties of the low-energy limit behavior of the flavor symmetry of $$ \mathcal{N} $$ N = 2 SCFTs which culminate with our $$ \mathcal{N} $$ N = 2 UV-IR simple flavor condition. This is done by determining precisely the relation between the integrand of the partition function of the topologically twisted version of the 4d $$ \mathcal{N} $$ N = 2 SCFTs and the singular locus of their Coulomb branches. The techniques developed here are extensively applied to many rank-2 SCFTs, including new ones, in a companion paper.This manuscript is dedicated to the memory of Rayshard Brooks, George Floyd, Breonna Taylor and the countless black lives taken by US police forces and still awaiting justice. Our hearts are with our colleagues of color who suffer daily the consequences of this racist world.


2021 ◽  
Vol 187 ◽  
pp. 60-70
Author(s):  
Bing Chen ◽  
Adnan OM Abuassba
Keyword(s):  

2021 ◽  
Vol 10 (5) ◽  
pp. 2549-2559
Author(s):  
K.R. Kumar ◽  
E.N. Satheesh ◽  
V.R. Pravitha

Kerala, a southern state of India, has shown better performance in the initial months of the spread of the disease. But in the last few months, the spread of the disease in the state has grown breaking all controls and the control and management system has shown very poor performance. Mathematical modeling of the spread of the disease is effectively is being used in the prediction and control of the disease world over. In this paper, we make a comparative study of the research conducted on this subject based on the compartmental models and social network analysis based models giving special emphasis to Kerala state. We also point out the drawbacks of the current studies in comparison with the intensity of the actual spread of disease.


2018 ◽  
Vol 28 (12) ◽  
pp. 3591-3608 ◽  
Author(s):  
Christoph Zimmer ◽  
Sequoia I Leuba ◽  
Ted Cohen ◽  
Reza Yaesoubi

Stochastic transmission dynamic models are needed to quantify the uncertainty in estimates and predictions during outbreaks of infectious diseases. We previously developed a calibration method for stochastic epidemic compartmental models, called Multiple Shooting for Stochastic Systems (MSS), and demonstrated its competitive performance against a number of existing state-of-the-art calibration methods. The existing MSS method, however, lacks a mechanism against filter degeneracy, a phenomenon that results in parameter posterior distributions that are weighted heavily around a single value. As such, when filter degeneracy occurs, the posterior distributions of parameter estimates will not yield reliable credible or prediction intervals for parameter estimates and predictions. In this work, we extend the MSS method by evaluating and incorporating two resampling techniques to detect and resolve filter degeneracy. Using simulation experiments, we demonstrate that an extended MSS method produces credible and prediction intervals with desired coverage in estimating key epidemic parameters (e.g. mean duration of infectiousness and R0) and short- and long-term predictions (e.g. one and three-week forecasts, timing and number of cases at the epidemic peak, and final epidemic size). Applying the extended MSS approach to a humidity-based stochastic compartmental influenza model, we were able to accurately predict influenza-like illness activity reported by U.S. Centers for Disease Control and Prevention from 10 regions as well as city-level influenza activity using real-time, city-specific Google search query data from 119 U.S. cities between 2003 and 2014.


Sign in / Sign up

Export Citation Format

Share Document