Localization of the center of the intramuscular nerve dense region of the medial femoral muscles and the significance for blocking spasticity

2020 ◽  
Vol 231 ◽  
pp. 151529
Author(s):  
Jie Wang ◽  
Qing Wang ◽  
Deyi Zhu ◽  
Yanjun Jiang ◽  
Shengbo Yang
Author(s):  
Bruce R. Pachter

Diabetes mellitus is one of the commonest causes of neuropathy. Diabetic neuropathy is a heterogeneous group of neuropathic disorders to which patients with diabetes mellitus are susceptible; more than one kind of neuropathy can frequently occur in the same individual. Abnormalities are also known to occur in nearly every anatomic subdivision of the eye in diabetic patients. Oculomotor palsy appears to be common in diabetes mellitus for their occurrence in isolation to suggest diabetes. Nerves to the external ocular muscles are most commonly affected, particularly the oculomotor or third cranial nerve. The third nerve palsy of diabetes is characteristic, being of sudden onset, accompanied by orbital and retro-orbital pain, often associated with complete involvement of the external ocular muscles innervated by the nerve. While the human and experimental animal literature is replete with studies on the peripheral nerves in diabetes mellitus, there is but a paucity of reported studies dealing with the oculomotor nerves and their associated extraocular muscles (EOMs).


1997 ◽  
Author(s):  
Terry Parker ◽  
Luca Rainaldi ◽  
Eric Jepsen ◽  
Terry Parker ◽  
Luca Rainaldi ◽  
...  

1997 ◽  
Vol 106 (11) ◽  
pp. 897-901 ◽  
Author(s):  
Robert G. Berkowitz ◽  
John Chalmers ◽  
Qi-Jian Sun ◽  
Paul M. Pilowsky

An anatomic and electrophysiological study of the rat posterior cricoarytenoid (PCA) muscle is described. The intramuscular nerve distribution of the PCA branch of the recurrent laryngeal nerve was demonstrated by a modified Sihler's stain. The nerve to the PCA was found to terminate in superior and inferior branches with a distribution that appeared to be confined to the PCA muscle. Electromyography (EMG) recordings of PCA muscle activity in anesthetized rats were obtained under stereotaxic control together with measurement of phrenic nerve discharge. A total of 151 recordings were made in 7 PCA muscles from 4 rats. Phasic inspiratory activity with a waveform similar to that of phrenic nerve discharge was found in 134 recordings, while a biphasic pattern with both inspiratory and post-inspiratory peaks was recorded from random sites within the PCA muscle on 17 occasions. The PCA EMG activity commenced 24.6 ± 2.2 milliseconds (p < .0001) before phrenic nerve discharge. The results are in accord with findings of earlier studies that show that PCA muscle activity commences prior to inspiratory airflow and diaphragmatic muscle activity. The data suggest that PCA and diaphragm motoneurons share common or similar medullary pre-motoneurons. The earlier onset of PCA muscle activity may indicate a role for medullary pre-inspiratory neurons in initiating PCA activity.


Development ◽  
1986 ◽  
Vol 95 (1) ◽  
pp. 147-168
Author(s):  
Jane Butler ◽  
Peter Cauwenbergs ◽  
Ethel Cosmos

The extent of interaction between brachial muscles and foreign (thoracic) nerves of the chick embryo was determined during an extended period of development in ovo from the perspectives of innervation pattern, function (motility analyses), muscle growth (quantitative analyses of muscle volume) and fibre-type expression (myosin-ATPase profiles). Results indicated that according to all parameters analysed, initially a compatible union existed between the foreign nerves and their muscle targets. During subsequent stages of development, deterioration of the once compatible relationship emerged, until eventually denervation of muscles, i.e. an actual loss of intramuscular nerve branches, was observed. The process of denervation, which proceeded at a differential rate among individual muscles, however was restricted to brachial muscles derived from the premuscle masses of the wing bud. In contrast, brachial muscles of myotomal origin were spared the fate of wing-bud-derived muscles and maintained a successful union with the foreign nerves.


2018 ◽  
Vol 613 ◽  
pp. A75 ◽  
Author(s):  
P. Kurfürst ◽  
A. Feldmeier ◽  
J. Krtička

Context. Evolution of massive stars is affected by a significant loss of mass either via (nearly) spherically symmetric stellar winds or by aspherical mass-loss mechanisms, namely the outflowing equatorial disks. However, the scenario that leads to the formation of a disk or rings of gas and dust around massive stars is still under debate. It is also unclear how various forming physical mechanisms of the circumstellar environment affect its shape and density, as well as its kinematic and thermal structure. Aims. We study the hydrodynamic and thermal structure of optically thick, dense parts of outflowing circumstellar disks that may be formed around various types of critically rotating massive stars, for example, Be stars, B[e] supergiant (sgB[e]) stars or Pop III stars. We calculate self-consistent time-dependent models of temperature and density structure in the disk’s inner dense region that is strongly affected by irradiation from a rotationally oblate central star and by viscous heating. Methods. Using the method of short characteristics, we specify the optical depth of the disk along the line-of-sight from stellar poles. Within the optically thick dense region with an optical depth of τ > 2∕3 we calculate the vertical disk thermal structure using the diffusion approximation while for the optically thin outer layers we assume a local thermodynamic equilibrium with the impinging stellar irradiation. For time-dependent hydrodynamic modeling, we use two of our own types of hydrodynamic codes: two-dimensional operator-split numerical code based on an explicit Eulerian finite volume scheme on a staggered grid, and unsplit code based on the Roe’s method, both including full second-order Navier-Stokes shear viscosity. Results. Our models show the geometric distribution and contribution of viscous heating that begins to dominate in the central part of the disk for mass-loss rates higher than Ṁ ≳ 10−10 M⊙ yr−1. In the models of dense viscous disks with Ṁ > 10−8 M⊙ yr−1, the viscosity increases the central temperature up to several tens of thousands of Kelvins, however the temperature rapidly drops with radius and with distance from the disk midplane. The high mass-loss rates and high viscosity lead to instabilities with significant waves or bumps in density and temperature in the very inner disk region. Conclusions. The two-dimensional radial-vertical models of dense outflowing disks including the full Navier-Stokes viscosity terms show very high temperatures that are however limited to only the central disk cores inside the optically thick area, while near the edge of the optically thick region the temperature may be low enough for the existence of neutral hydrogen, for example.


1960 ◽  
Vol 8 (2) ◽  
pp. 305-318 ◽  
Author(s):  
Philip M. Grimley ◽  
George A. Edwards

The fine structure of desmosomes and intercalated discs in the toad heart is discussed. A definite relationship between the dense components of these structures and the dense region of the Z band is demonstrated. The dense region of the Z band characteristically widens at its approach to the plasma membrane, and often terminates beneath it in a distinct discoidal plaque. Cardiac desmosomes appear to be structures which result from the intimate apposition of plaques of Z band material. These desmosomes retain the Z band function as sites of attachment for myofilaments. The suggestion is made that rotation of a desmosome through 90° and splitting of filaments from the adjacent sarcomere could result in the formation of a simple step-like intercalated disc. Intermediate stages in this process are illustrated. Complex discs present in the toad probably represent the alignment of groups of simple discs produced by contractile forces. Possible physiologic functions of the disc and desmosome are discussed. Other morphologic features of toad cardiac cells include a distinct amorphous outer coat to the sarcolemma, a prominent N band, and a granular sarcoplasm with poorly developed reticulum.


1973 ◽  
Vol 12 (1) ◽  
pp. 175-195
Author(s):  
ALICE MILBURN

The morphogenesis of muscle spindles in rat lower hind-limb muscles has been investigated using the electron microscope. The earliest detectable spindles are seen in the 19.5-day foetus and consist of a single myotube bearing simple nerve terminals of the large primary afferent axon from nearby unmyelinated intramuscular nerve trunks. The capsule forms by an extension of the perineural epithelium of the supplying nerve fasciculus, and is confined initially to the innervated zone. Myonuclei accumulate in this region, so that the first intrafusal muscle fibre to develop is a nuclear-bag fibre. Myoblasts, present within the capsule of the spindle throughout its development, fuse to form a smaller less-differentiated myotube by the 20-day foetal stage. This new myotube matures by close association with the initial fibre, and by birth (21-22 days gestation) has formed the smaller, intermediate bag fibre, that has been identified histochemically and ultrastructurally in the adult. The nuclear-chain fibres develop in the same way; myoblasts fuse to form satellite myotubes that mature in pseudopodial apposition to one of the other fibres within its basement membrane. This apposition consists of extensions of sarcoplasm from the developing myotube into the supporting fibre. By the 4-day postnatal stage the full adult complement of 4 intrafusal muscle fibres is present, although ultrastructural variations, seen in the adult, are not differentiated. The fusimotor innervation begins to arrive at birth, but is not mature until the 12th postnatal day, when the myofibrillar ultrastructural differentiation, including the loss of the M-line in the large-diameter bag fibre, is complete. The periaxial space appears at the same time. It is suggested that the sequential development of the intrafusal fibres is a reflexion of the decreasing morphogenetic effect of the afferent innervation, whereas the role of the fusimotor innervation is in ultrastructural, myofibrillar differentiation.


2019 ◽  
Vol 45 (2) ◽  
pp. 215-220
Author(s):  
Hyun Jin Shin ◽  
Shin-Hyo Lee ◽  
Tae-Jun Ha ◽  
Wu-Chul Song ◽  
Ki-Seok Koh

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Andras Balogh ◽  
Lam Ngo ◽  
Kirk S. Zigler ◽  
Groves Dixon

Abstract Caves offer selective pressures that are distinct from the surface. Organisms that have evolved to exist under these pressures typically exhibit a suite of convergent characteristics, including a loss or reduction of eyes and pigmentation. As a result, cave-obligate taxa, termed troglobionts, are no longer viable on the surface. This circumstance has led to an understanding of highly constrained dispersal capabilities, and the prediction that, in the absence of subterranean connections, extreme genetic divergence between cave populations. An effective test of this model would involve (1) common troglobionts from (2) nearby caves in a cave-dense region, (3) good sample sizes per cave, (4) multiple taxa, and (5) genome-wide characterization. With these criteria in mind, we used RAD-seq to genotype an average of ten individuals of the troglobiotic spider Nesticus barri and the troglobiotic beetle Ptomaphagus hatchi, each from four closely located caves (ranging from 3 to 13 km apart) in the cave-rich southern Cumberland Plateau of Tennessee, USA. Consistent with the hypothesis of highly restricted dispersal, we find that populations from separate caves are indeed highly genetically isolated. Our results support the idea of caves as natural laboratories for the study of parallel evolutionary processes.


Sign in / Sign up

Export Citation Format

Share Document