A colorimetric assay optimization for high-throughput screening of dihydroorotase by detecting ureido groups

2013 ◽  
Vol 441 (1) ◽  
pp. 87-94 ◽  
Author(s):  
Amy J. Rice ◽  
Lena Truong ◽  
Michael E. Johnson ◽  
Hyun Lee
2018 ◽  
Vol 84 (16) ◽  
Author(s):  
Wei Zhou ◽  
Rui Huang ◽  
Zhiguang Zhu ◽  
Yi-Heng P. Job Zhang

ABSTRACT Thermostability and specific activity of enzymes are two of the most important properties for industrial biocatalysts. Here, we developed a petri dish-based double-layer high-throughput screening (HTS) strategy for rapid identification of desired mutants of polyphosphate glucokinase (PPGK) from a thermophilic actinobacterium, Thermobifida fusca YX, with both enhanced thermostability and activity. Escherichia coli colonies representing a PPGK mutant library were grown on the first-layer Phytagel-based plates, which can remain solid for 1 h, even at heat treatment temperatures of more than 100°C. The second layer that was poured on the first layer contained agarose, substrates, glucose 6-phosphate dehydrogenase (G6PDH), the redox dye tetranitroblue tetrazolium (TNBT), and phenazine methosulfate. G6PDH was able to oxidize the product from the PPGK-catalyzed reaction and generate NADH, which can be easily examined by a TNBT-based colorimetric assay. The best mutant obtained after four rounds of directed evolution had a 7,200-fold longer half-life at 55°C, 19.8°C higher midpoint of unfolding temperature (Tm), and a nearly 3-fold enhancement in specific activities compared to those of the wild-type PPGK. The best mutant was used to produce 9.98 g/liter myo-inositol from 10 g/liter glucose, with a theoretical yield of 99.8%, along with two other hyperthermophilic enzymes at 70°C. This PPGK mutant featuring both great thermostability and high activity would be useful for ATP-free production of glucose 6-phosphate or its derived products.IMPORTANCE Polyphosphate glucokinase (PPGK) is an enzyme that transfers a terminal phosphate group from polyphosphate to glucose, producing glucose 6-phosphate. A petri dish-based double-layer high-throughput screening strategy was developed by using ultrathermostable Phytagel as the first layer instead of agar or agarose, followed by a redox dye-based assay for rapid identification of ultrathermostable PPGK mutants. The best mutant featuring both great thermostability and high activity could produce glucose 6-phosphate from glucose and polyphosphate without in vitro ATP regeneration.


2020 ◽  
Vol 21 (9) ◽  
pp. 3034 ◽  
Author(s):  
Shella Gilbert-Girard ◽  
Kirsi Savijoki ◽  
Jari Yli-Kauhaluoma ◽  
Adyary Fallarero

In recent years, bacterial infections have become a main concern following the spread of antimicrobial resistance. In addition, bacterial biofilms are known for their high tolerance to antimicrobials and they are regarded as a main cause of recalcitrant infections in humans. Many efforts have been deployed in order to find new antibacterial therapeutic options and the high-throughput screening (HTS) of large libraries of compounds is one of the utilized strategies. However, HTS efforts for anti-biofilm discovery remain uncommon. Here, we miniaturized a 96-well plate (96WP) screening platform, into a 384-well plate (384WP) format, based on a sequential viability and biomass measurements for the assessment of anti-biofilm activity. During the assay optimization process, different parameters were evaluated while using Staphylococcus aureus and Pseudomonas aeruginosa as the bacterial models. We compared the performance of the optimized 384WP platform to our previously established 96WP-based platform by carrying out a pilot screening of 100 compounds, followed by the screening of a library of 2000 compounds to identify new repurposed anti-biofilm agents. Our results show that the optimized 384WP platform is well-suited for screening purposes, allowing for the rapid screening of a higher number of compounds in a run in a reliable manner.


2016 ◽  
Vol 182 (1) ◽  
pp. 142-154 ◽  
Author(s):  
Manoj Kumar Yadav ◽  
Vijay Kumar ◽  
Bijender Singh ◽  
Santosh Kumar Tiwari

2013 ◽  
Vol 58 (1) ◽  
pp. 527-535 ◽  
Author(s):  
Erika van den Bogaart ◽  
Gerard J. Schoone ◽  
Paul England ◽  
Dorien Faber ◽  
Kristina M. Orrling ◽  
...  

ABSTRACTCritical to the search for new anti-leishmanial drugs is the availability of high-throughput screening (HTS) methods to test chemical compounds against the relevant stage for pathogenesis, the intracellular amastigotes. Recent progress in automated microscopy and genetic recombination has produced powerful tools for drug discovery. Nevertheless, a simple and efficient test for measuring drug activity againstLeishmaniaclinical isolates is lacking. Here we describe a quantitative colorimetric assay in which the activity of aLeishmanianative enzyme is used to assess parasite viability. Enzymatic reduction of disulfide trypanothione, monitored by a microtiter plate reader, was used to quantify the growth ofLeishmaniaparasites. An excellent correlation was found between the optical density at 412 nm and the number of parasites inoculated. Pharmacological validation of the assay was performed against the conventional alamarBlue method for promastigotes and standard microscopy for intracellular amastigotes. The activity of a selected-compound panel, including several anti-leishmanial reference drugs, demonstrated high consistency between the newly developed assay and the reference method and corroborated previously published data. Quality assessment with standard measures confirmed the robustness and reproducibility of the assay, which performed in compliance with HTS requirements. This simple and rapid assay provides a reliable, accurate method for screening anti-leishmanial agents, with high throughput. The basic equipment and manipulation required to perform the assay make it easy to implement, simplifying the method for scoring inhibitor assays.


2001 ◽  
Vol 6 (2) ◽  
pp. 91-99 ◽  
Author(s):  
Ilona Kariv ◽  
Mark P. Fereshteh ◽  
Kevin R. Oldenburg

The identification of a large number of biologically active chemical entities during high throughput screening (HTS) necessitates the incorporation of new strategies to identify compounds with druglike properties early during the lead prioritization and development process. One of the major steps in lead prioritization is the assessment of drug metabolism mediated by the cytochrome P450 (CYP) enzymes to evaluate the potential drug-drug interactions. CYP2D6 and CYP3A4 comprise the main human CYP enzymes involved in drug metabolism. The recent availability of specific CYP cDNA expression systems and the development of specific fluorescent probes have accelerated the ability to develop robust in vitro assays in HTS format. The aim of this study was to optimize conditions for the CYP2D6 and CYP3A4 HTS assays and subsequently adapt those assays to a miniaturized 384-well format. Assay conversion to a miniaturized format presents certain difficulties, such as robustness of the signal and of compound delivery. Thus the assay optimization involved the comparison of different substrates to identify those most suitable for use in a miniaturized format. Because of current technical limitations in liquid dispensing of nanoliter volumes, assay sensitivity to organic solvents also provides a main concern during assay miniaturization. Therefore, compound activity from redissolved dry films and from DMSO stocks directly delivered into assay buffer was compared. The data indicate that compound activity was comparable in both formats. The data support the conclusion that CYP2D6 and CYP3A4 in vitro metabolism assays can be successfully performed in 384-well plate format and the substrate potencies, as evaluated by the IC50 values, determined.


ChemInform ◽  
2016 ◽  
Vol 47 (15) ◽  
pp. no-no
Author(s):  
D. Baud ◽  
N. Ladkau ◽  
T. S. Moody ◽  
J. M. Ward ◽  
H. C. Hailes

2017 ◽  
Vol 23 (1) ◽  
pp. 1-10 ◽  
Author(s):  
Eun Jeong Cho ◽  
Ashwini K. Devkota ◽  
Gabriel Stancu ◽  
Ramakrishna Edupunganti ◽  
Garth Powis ◽  
...  

A high rate of glycolysis, which supplies energy and materials for anabolism, is observed in a wide range of tumor cells, making it a potential pathway to control cancer growth. ALDOA is a multifunctional enzyme in the glycolytic pathway and also promotes HIF-1α, which is of importance in hypoxic solid tumors. The current method for assaying ALDOA activity involves monitoring the consumption of NADH in vitro using absorbance or intrinsic fluorescence via a coupled enzymatic reaction. Here, we report the development of a homogeneous biochemical assay that can overcome limitations of current methods, in particular for the application of high-throughput drug screening. The assay utilizes the commercially available Elite NADH Assay Kit, which incorporates an enzymatic reaction to measure the level of NADH using a fluorescent probe. Assay optimization and validation are discussed. Its feasibility for high-throughput screening (HTS) was demonstrated by screening 65,000 compounds for the identification of small molecules that inhibit ALDOA. Through a validation screen and dose–response evaluation, four inhibitors with IC50 below 10 µM were identified. In conclusion, we demonstrate that a traditional ALDOA assay can be transformed readily into a fluorescence-based assay utilizing a commercial NADH detection kit that is rapid, sensitive, inexpensive, and HTS friendly.


2015 ◽  
Vol 51 (97) ◽  
pp. 17225-17228 ◽  
Author(s):  
D. Baud ◽  
N. Ladkau ◽  
T. S. Moody ◽  
J. M. Ward ◽  
H. C. Hailes

Red light for transaminases. A highly sensitive colorimetric assay using an inexpensive amine donor has been established for use in high-throughput transaminase screens.


Sign in / Sign up

Export Citation Format

Share Document