scholarly journals Fur-like proteins: Beyond the ferric uptake regulator (Fur) paralog

2021 ◽  
Vol 701 ◽  
pp. 108770
Author(s):  
Emma Sevilla ◽  
M. Teresa Bes ◽  
M. Luisa Peleato ◽  
María F. Fillat
2006 ◽  
Vol 400 (3) ◽  
pp. 385-392 ◽  
Author(s):  
Erdeni Bai ◽  
Federico I. Rosell ◽  
Bao Lige ◽  
Marcia R. Mauk ◽  
Barbara Lelj-Garolla ◽  
...  

The functional properties of the recombinant C-terminal dimerization domain of the Pseudomonas aeruginosa Fur (ferric uptake regulator) protein expressed in and purified from Escherichia coli have been evaluated. Sedimentation velocity measurements demonstrate that this domain is dimeric, and the UV CD spectrum is consistent with a secondary structure similar to that observed for the corresponding region of the crystallographically characterized wild-type protein. The thermal stability of the domain as determined by CD spectroscopy decreases significantly as pH is increased and increases significantly as metal ions are added. Potentiometric titrations (pH 6.5) establish that the domain possesses a high-affinity and a low-affinity binding site for metal ions. The high-affinity (sensory) binding site demonstrates association constants (KA) of 10(±7)×106, 5.7(±3)×106, 2.0(±2)×106 and 2.0(±3)×104 M−1 for Ni2+, Zn2+, Co2+ and Mn2+ respectively, while the low-affinity (structural) site exhibits association constants of 1.3(±2)×106, 3.2(±2)×104, 1.76(±1)×105 and 1.5(±2)×103 M−1 respectively for the same metal ions (pH 6.5, 300 mM NaCl, 25 °C). The stability of metal ion binding to the sensory site follows the Irving–Williams order, while metal ion binding to the partial sensory site present in the domain does not. Fluorescence experiments indicate that the quenching resulting from binding of Co2+ is reversed by subsequent titration with Zn2+. We conclude that the domain is a reasonable model for many properties of the full-length protein and is amenable to some analyses that the limited solubility of the full-length protein prevents.


2020 ◽  
Vol 295 (46) ◽  
pp. 15454-15463 ◽  
Author(s):  
Chelsey R. Fontenot ◽  
Homyra Tasnim ◽  
Kathryn A. Valdes ◽  
Codrina V. Popescu ◽  
Huangen Ding

The ferric uptake regulator (Fur) is a global transcription factor that regulates intracellular iron homeostasis in bacteria. The current hypothesis states that when the intracellular “free” iron concentration is elevated, Fur binds ferrous iron, and the iron-bound Fur represses the genes encoding for iron uptake systems and stimulates the genes encoding for iron storage proteins. However, the “iron-bound” Fur has never been isolated from any bacteria. Here we report that the Escherichia coli Fur has a bright red color when expressed in E. coli mutant cells containing an elevated intracellular free iron content because of deletion of the iron–sulfur cluster assembly proteins IscA and SufA. The acid-labile iron and sulfide content analyses in conjunction with the EPR and Mössbauer spectroscopy measurements and the site-directed mutagenesis studies show that the red Fur protein binds a [2Fe-2S] cluster via conserved cysteine residues. The occupancy of the [2Fe-2S] cluster in Fur protein is ∼31% in the E. coli iscA/sufA mutant cells and is decreased to ∼4% in WT E. coli cells. Depletion of the intracellular free iron content using the membrane-permeable iron chelator 2,2´-dipyridyl effectively removes the [2Fe-2S] cluster from Fur in E. coli cells, suggesting that Fur senses the intracellular free iron content via reversible binding of a [2Fe-2S] cluster. The binding of the [2Fe-2S] cluster in Fur appears to be highly conserved, because the Fur homolog from Hemophilus influenzae expressed in E. coli cells also reversibly binds a [2Fe-2S] cluster to sense intracellular iron homeostasis.


Microbiology ◽  
2002 ◽  
Vol 148 (8) ◽  
pp. 2449-2456 ◽  
Author(s):  
Allison C. Lewin ◽  
Phillip A. Doughty ◽  
Lynda Flegg ◽  
Geoffrey R. Moore ◽  
Stephen Spiro

2013 ◽  
Vol 82 (1) ◽  
pp. 333-340 ◽  
Author(s):  
Maroof Husain ◽  
Jessica Jones-Carson ◽  
Lin Liu ◽  
Miryoung Song ◽  
J. Royden Saah ◽  
...  

ABSTRACTHerein we report an important role for the ferric uptake regulator (Fur) in the resistance ofSalmonellaentericaserovar Typhimurium to the reactive nitrogen species produced by inducible nitric oxide (NO) synthase in an NRAMP1rmurine model of acute systemic infection. The expression offurprotectedSalmonellagrown under normoxic and hypoxic conditions against the bacteriostatic activity of NO. The hypersusceptibility offur-deficientSalmonellato the cytotoxic actions of NO coincides with a marked repression of respiratory activity and the reduced ability of the bacteria to detoxify NO. AfurmutantSalmonellastrain contained reduced levels of the terminal quinol oxidases of the electron transport chain. Addition of the heme precursor δ-aminolevulinic acid restored the cytochrome content, respiratory activity, NO consumption, and wild-type growth in bacteria undergoing nitrosative stress. The innate antinitrosative defenses regulated by Fur added to the adaptive response associated with the NO-detoxifying activity of the flavohemoprotein Hmp. Our investigations indicate that, in addition to playing a critical role in iron homeostasis, Fur is an important antinitrosative determinant ofSalmonellapathogenesis.


2004 ◽  
Vol 186 (5) ◽  
pp. 1409-1414 ◽  
Author(s):  
Heather P. Benson ◽  
Kristin LeVier ◽  
Mary Lou Guerinot

ABSTRACT In many bacteria, the ferric uptake regulator (Fur) protein plays a central role in the regulation of iron uptake genes. Because iron figures prominently in the agriculturally important symbiosis between soybean and its nitrogen-fixing endosymbiont Bradyrhizobium japonicum, we wanted to assess the role of Fur in the interaction. We identified a fur mutant by selecting for manganese resistance. Manganese interacts with the Fur protein and represses iron uptake genes. In the presence of high levels of manganese, bacteria with a wild-type copy of the fur gene repress iron uptake systems and starve for iron, whereas fur mutants fail to repress iron uptake systems and survive. The B. japonicum fur mutant, as expected, fails to repress iron-regulated outer membrane proteins in the presence of iron. Unexpectedly, a wild-type copy of the fur gene cannot complement the fur mutant. Expression of the fur mutant allele in wild-type cells leads to a fur phenotype. Unlike a B. japonicum fur-null mutant, the strain carrying the dominant-negative fur mutation is unable to form functional, nitrogen-fixing nodules on soybean, mung bean, or cowpea, suggesting a role for a Fur-regulated protein or proteins in the symbiosis.


Sign in / Sign up

Export Citation Format

Share Document