The role of the phosphate groups of trinitrophenyl adenosine 5′-triphosphate (TNP-ATP) in allosteric activation of pyruvate carboxylase and the inhibition of acetyl CoA-dependent activation

2021 ◽  
Vol 711 ◽  
pp. 109017
Author(s):  
Khanti Rattanapornsompong ◽  
Chaiyos Sirithanakorn ◽  
Sarawut Jitrapakdee ◽  
Paul V. Attwood
2021 ◽  
Vol 35 (S1) ◽  
Author(s):  
Amanda Laseke ◽  
Martin St. Maurice ◽  
Jeremy Lohman ◽  
Aaron Benjamin

1976 ◽  
Vol 29 (6) ◽  
pp. 429 ◽  
Author(s):  
RL Hood ◽  
A RJohnson ◽  
AC Fogerty ◽  
Judith A Pearson

The role of biotin-dependent enzymes in the fatty liver and kidney syndrome of young chicks was studied. Under conditions of a marginal deficiency of dietary biotin, the level of biotin in the liver has differing effects on the activities of two biotin-dependent enzymes, pyruvate carboxylase and acetyl-CoA carboxylase. The activity of acetyl-CoA carboxylase is increased, but when the dietary deficiency of biotin produces biotin levels which are below o� 8 p,g/g of liver, the activity of pyruvate carboxylase may be insufficient to completely metabolize pyruvate via gluconeogenesis. There is an increase in liver size and in the activities of enzymes involved in alternate pathways for the removal of pyruvate. Blood lactate accumulates and there is increased synthesis of fatty acids, and an accumulation of palmitoleic acid; these steps are accomplished by increased activities of at least the following enzymes: acetyl-CoA carboxylase, malate dehydrogenase (decarboxylating) (NADP+) and the desaturase enzyme. When the biotin level is below 0�35 p,g/g of liver and the chick is subjected to a stress, physiological defence mechanisms of the chick may be inadequate to maintain homeostasis and they finally collapse, resulting in accumulation of triacylglycerol in the liver and blood; the chick is unable to maintain blood glucose levels and death occurs, often only a few hours after the imposition of the stress.


Planta Medica ◽  
2011 ◽  
Vol 77 (12) ◽  
Author(s):  
C Charkhonpunya ◽  
S Sireeratawong ◽  
S Komindr ◽  
N Lerdvuthisopon

2009 ◽  
Vol 57 (3) ◽  
pp. 321-333 ◽  
Author(s):  
H. Moussa ◽  
S. EL-Gamal

Treatment with CdCl 2 (0, 100, 400 and 1000 μM) resulted in the inhibition of root dry biomass and root elongation and to increased Cd accumulation in the roots. These treatments also decreased the relative water content, chlorophyll content, 14 CO fixation, phosphoenol pyruvate carboxylase and ribulose-1,5-bisphosphate carboxylase activity and abscisic acid (ABA) content, while increasing the malondialdehyde, hydrogen peroxide and free proline contents and causing changes in the chloroplast and root ultrastructure. Pretreatment of seeds with SA (500 μM) for 20 h resulted in the amelioration of these effects.


Sign in / Sign up

Export Citation Format

Share Document