Highly electrically conductive two-dimensional Ti3C2 Mxenes-based 16S rDNA electrochemical sensor for detecting Mycobacterium tuberculosis

2020 ◽  
Vol 1123 ◽  
pp. 9-17
Author(s):  
Jialin Zhang ◽  
Yao Li ◽  
Shaoyun Duan ◽  
Fengjiao He
2012 ◽  
pp. 15-19
Author(s):  
Thi Chau Anh Nguyen ◽  
Hoang Bach Nguyen ◽  
Hai Duong Huynh ◽  
Nu Xuan Thanh Le ◽  
Xuan Cuong Le ◽  
...  

Background: The Nested IS6110 PCR is used for detecting tuberculosis, however IS6110 sequence is not present in the genome of all strains of M.tuberculosis, the result may be false negative. The gene coding 16S ribosome always contains a short sequence specific to M. tuberculosis complex. Objects: Performance of the 16S Real-time PCR to detect M. tuberculosis and combining to the nested IS6110 PCR to determine the rate of Mtb strains without IS6110 from clinical samples. Materials and method: Performance of 16S rDNA PCR by commercial kit of Viet A Inc. for all 480 samples, the samples which were positive with the 16S rDNA PCR were retested in IS6110 PCR assay by in-house kit. Results: The Realtime 16S rDNA PCR detected 258 cases (53.8%) of tuberculosis. There were 3 (1.2 %) M. tuberculosis strains which do not harbor IS6110 sequence in genome. Conclusion: The IS6110 nested PCR can be applied more widely than the 16S rDNA realtime PCR. In case of using IS6110 PCR assay, results may show a low proportion of false negative. Combining 16S rDNA PCR with the IS6110 based PCR allowed detection of deletion of IS6110 sequence in M. tuberculosis isolates.


1994 ◽  
Vol 297 (2) ◽  
pp. 351-357 ◽  
Author(s):  
A Lemassu ◽  
M Daffé

The cell envelope which surrounds pathogenic mycobacteria is postulated to be a defence barrier against phagocytic cells and its outermost constituents have a tendency to accumulate in the culture medium. The present work demonstrates that the exocellular material of Mycobacterium tuberculosis contains large amounts of polysaccharides with only traces, if any at all, of lipids. Three types of polysaccharides were purified by anion-exchange and gel-filtration chromatography; all were found to be neutral compounds devoid of acyl substituents. They consisted of D-glucan, D-arabino-D-mannan and D-mannan, which were eluted from gel-filtration columns in positions corresponding to molecular masses of 123, 13 and 4 kDa respectively. Their predominant structural features were determined by the characterization of the per-O-methyl derivatives of enzymic, acetolysis and Smith-degradation products and by 1H- and 13C-n.m.r. spectroscopy of the purified polysaccharides, using mono- and two-dimensional homonuclear chemical-shift correlated spectroscopy and two-dimensional heteronuclear (1H/13C) spectroscopy. The glucan which represented up to 90% of the polysaccharides was composed of repeating units of five or six-->4-alpha-D-Glcp-1--> residues and a -->4-alpha-D-Glcp substituted at position 6 with an alpha-D-Glcp, indicating a glycogen-like highly branched structure not related to the so-called polysaccharide-II previously identified in tuberculin. The arabinomannan consisted of a mannan segment composed of a -->6-alpha-D-Man-1--> core substituted at some positions 2 with an alpha-D-Manp. The arabinan termini of the arabinomannan were found to be extensively capped with mannosyl residues. The possibility that these polysaccharides contribute to the persistence of the tubercle bacillus in the macrophage by molecular mimicry is discussed.


2018 ◽  
Vol 10 (41) ◽  
pp. 4985-4994 ◽  
Author(s):  
Juan Wang ◽  
Wei Du ◽  
Xingqi Huang ◽  
Junling Hu ◽  
WeiWei Xia ◽  
...  

A sensitive and selective electrochemical sensor for metronidazole was constructed based on surface imprinted vertically cross-linked two-dimensional Sn3O4 nanoplates.


2021 ◽  
Author(s):  
Jamie W. Gittins ◽  
Chloe J. Balhatchet ◽  
Yuan Chen ◽  
Cheng Liu ◽  
David G. Madden ◽  
...  

Two-dimensional electrically conductive metal-organic frameworks (MOFs) have emerged as promising model electrodes for use in electric double-layer capacitors (EDLCs). However, a number of fundamental questions about the behaviour of this class of materials in EDLCs remain unanswered, including the effect of the identity of the metal node and organic linker molecule on capacitive performance and the limitations of current conductive MOFs in these devices relative to traditional activated carbon electrode materials. Herein, we address both these questions via a detailed study of the capacitive performance of the framework Cu<sub>3</sub>(HHTP)<sub>2</sub> (HHTP = 2,3,6,7,10,11-hexahydroxytriphenylene) with an acetonitrile-based electrolyte, finding a specific capacitance of 110 – 114 F g<sup>−1</sup> at current densities of 0.04 – 0.05 A g<sup>−1</sup> and a modest rate capability. By, directly comparing its performance with the previously reported analogue, Ni<sub>3</sub>(HITP)<sub>2</sub> (HITP = 2,3,6,7,10,11-hexaiminotriphenylene), we illustrate that capacitive performance is largely independent of the identity of the metal node and organic linker molecule in these nearly isostructural MOFs. Importantly, this result suggests that EDLC performance in general is uniquely defined by the 3D structure of the electrodes and the electrolyte, a significant finding not demonstrated using traditional electrode materials. Finally, we probe the limitations of Cu<sub>3</sub>(HHTP)<sub>2</sub> in EDLCs, finding a limited cell voltage window of 1.3 V and only a modest capacitance retention of 81 % over 30,000 cycles, both significantly lower than state-of-the-art porous carbons. These important insights will aid the design of future conductive MOFs with greater EDLC performances.


Sign in / Sign up

Export Citation Format

Share Document