A fast scan cyclic voltammetric digital circuit with precise ohmic drop compensation by online measuring solution resistance and its biosensing application

2021 ◽  
pp. 338744
Author(s):  
Fengming Xiao ◽  
Huiqian Zhou ◽  
Han Lin ◽  
Hongze Li ◽  
Tinglang Zou ◽  
...  
2018 ◽  
Vol 69 (1) ◽  
pp. 112-115
Author(s):  
Ana Maria Popescu ◽  
Virgil Constantin

The cathodic behavior of Ce3+ ions in LiF-NaF-BaF2, LiF-NaF-NaCl and NaCl-KCl molten salts at 730� C has been studied using different electrochemical techniques. The decomposition potential (Ed) and the cathodic overvoltage were determined by introducing NaCeF4 as electrochemical active species using steady-state potential-current curves recorded under galvanostatic conditions. The values of |Ed| were 1.85 V in LiF-NaF-BaF2, 2.114 V in LiF-NaF-NaCl and 2.538 V in NaCl-KCl, respectively. It was also found that the ohmic drop potential in melt is not dependent on NaCeF4 concentration and it rises as the current intensity increases. The Tafel slopes and other kinetic parameters were calculated on the assumption that the cathodic process consisted of direct discharge of Ce3+, with no solvent-solute interaction. In order to elucidate the mechanisn of cathodic process the cyclic voltammetry technique was finally used. From the evolution of the voltammograms we conclude that the electrochemical reduction of Ce3+ ion is actually a reversible process on the molybdenum electrode and cathodic reduction of Ce3+ takes place in one single step involving three electron exchange. Our study adds to the accumulating data and confirms available results of electrodeposition of metalic cerium from molten salts using NaCeF4 as solute.


Symmetry ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1420
Author(s):  
Chuanfu Wang ◽  
Yi Di ◽  
Jianyu Tang ◽  
Jing Shuai ◽  
Yuchen Zhang ◽  
...  

Dynamic degradation occurs when chaotic systems are implemented on digital devices, which seriously threatens the security of chaos-based pseudorandom sequence generators. The chaotic degradation shows complex periodic behavior, which is often ignored by designers and seldom analyzed in theory. Not knowing the exact period of the output sequence is the key problem that affects the application of chaos-based pseudorandom sequence generators. In this paper, two cubic chaotic maps are combined, which have symmetry and reconfigurable form in the digital circuit. The dynamic behavior of the cubic chaotic map and the corresponding digital cubic chaotic map are analyzed respectively, and the reasons for the complex period and weak randomness of output sequences are studied. On this basis, the digital cubic chaotic map is optimized, and the complex periodic behavior is improved. In addition, a reconfigurable pseudorandom sequence generator based on the digital cubic chaotic map is constructed from the point of saving consumption of logical resources. Through theoretical and numerical analysis, the pseudorandom sequence generator solves the complex period and weak randomness of the cubic chaotic map after digitization and makes the output sequence have better performance and less resource consumption, which lays the foundation for applying it to the field of secure communication.


2021 ◽  
pp. 111512
Author(s):  
Hani Shashaani ◽  
Navid Akbari ◽  
Mahsa Faramarzpour ◽  
Mohammad Salemizadeh Parizi ◽  
Shohreh Vanaei ◽  
...  

2021 ◽  
Vol 1952 (2) ◽  
pp. 022038
Author(s):  
Min Sha ◽  
Zhilong Tang ◽  
Ding Zhang ◽  
Zhengyong Zhang ◽  
Jun Liu

2021 ◽  
Vol 13 (2) ◽  
pp. 27
Author(s):  
Chuanyan Hao ◽  
Anqi Zheng ◽  
Yuqi Wang ◽  
Bo Jiang

In the information age, MOOCs (Massive Open Online Courses), micro-classes, flipping classroom, and other blended teaching scenes have improved students learning outcomes. However, incorporating technologies into experimental courses, especially electronic and electrical experiments, has its own characteristics and difficulties. The focus of this paper is to introduce virtual technology into an electronic circuit experiment course and to explore its teaching strategy, thereby realizing the informatization of experiment teaching. First, this paper explores the design concepts and implementation details of the digital circuit virtual laboratory, which is then developed based on previous literature and a prequestionnaire to users. Second, the informatization process of the experiment learning model based on traditional custom lab benches is shown through a blended learning scheme that integrates the online virtual laboratory. Finally, the experiment information system is verified and analyzed with a control group experiment and questionnaires. The blended program turned out to be an effective teaching model to complement the deficiencies in existing physical laboratories. The research conclusions show that the virtual experiment system provides students with a rich, efficient, and expansive experimental experience, in particular, the flexibility, repeatability, and visual appeal of a virtual platform could promote the development of students’ abilities in active learning, reflective thinking, and creativity.


Sign in / Sign up

Export Citation Format

Share Document