scholarly journals Tibetan Plateau Geladaindong black carbon ice core record (1843–1982): Recent increases due to higher emissions and lower snow accumulation

2016 ◽  
Vol 7 (3) ◽  
pp. 132-138 ◽  
Author(s):  
Jenkins Matthew ◽  
Kaspari Susan ◽  
Shi-Chang Kang ◽  
Grigholm Bjorn ◽  
Mayewski Paul A.
2020 ◽  
Author(s):  
Joel D. Barker ◽  
Susan Kaspari ◽  
Paolo Gabrielli ◽  
Anna Wegner ◽  
Emilie Beaudon ◽  
...  

Abstract. Himalayan glaciers are melting due to atmospheric warming with the potential to limit access to water for more than 25 % of the global population that reside in these glacier meltwater catchments. Black carbon has been implicated as a factor that is contributing to Himalayan glacier melt, but its sources and mechanisms of delivery to the Himalayas remain controversial. Here, we provide a 211-year ice core record spanning 1781–1992 CE for refractory black carbon (rBC) deposition from the Dasuopu glacier ice core, that has to date provided the highest elevation ice core record (7200 m). We report an average rBC concentration of 1.5 µg/L (SD = 5.0, n = 1628) over the 211-year period. An increase in the frequency and magnitude of rBC deposition occurs after 1877 CE, accompanied by decreased snow accumulation associated with a shift in the North Atlantic Oscillation Index to a positive phase. Typically, rBC is deposited onto Dasuopu glacier during the non-monsoon season, and short-lived increases in rBC concentration are associated with periods of drought within neighboring regions in north-west India, Afghanistan and Pakistan. Using a combination of spectral and back trajectory analyses, and comparison with a concurrent analysis of trace metals at equivalent depths in the same ice core, we show that biomass burning resulting from dry conditions is a source of rBC to the central Himalaya, and is responsible for deposition that is up to 60 times higher than the average rBC concentration over the time period analyzed. We suggest that biomass burning is a significant source of rBC to the central Himalaya, and that the rBC record can be used to identify periods of drought in nearby regions that are up-wind of Dasuopu glacier.


2021 ◽  
Vol 21 (7) ◽  
pp. 5615-5633
Author(s):  
Joel D. Barker ◽  
Susan Kaspari ◽  
Paolo Gabrielli ◽  
Anna Wegner ◽  
Emilie Beaudon ◽  
...  

Abstract. Himalayan glaciers are melting due to atmospheric warming, with the potential to limit access to water for more than 25 % of the global population that resides in these glacier meltwater catchments. Black carbon has been implicated as a factor that is contributing to Himalayan glacier melt, but its sources and mechanisms of delivery to the Himalayas remain controversial. Here, we provide a 211-year ice core record spanning 1781–1992 CE for refractory black carbon (rBC) deposition from the Dasuopu glacier ice core that has to date provided the highest-elevation ice core record (7200 m). We report an average rBC concentration of 1.5 µg L−1 (SD=5.0, n=1628) over the 211-year period. An increase in the frequency and magnitude of rBC deposition occurs after 1877 CE, accompanied by decreased snow accumulation associated with a shift in the North Atlantic Oscillation Index to a positive phase. Typically, rBC is deposited onto Dasuopu glacier during the non-monsoon season, and short-lived increases in rBC concentration are associated with periods of drought within neighboring regions in northwestern India, Afghanistan, and Pakistan. Using a combination of spectral and back-trajectory analyses, as well as a comparison with a concurrent analysis of trace metals at equivalent depths in the same ice core, we show that biomass burning resulting from dry conditions is a source of rBC to the central Himalaya and is responsible for deposition that is up to 60 times higher than the average rBC concentration over the time period analyzed. We suggest that biomass burning is a significant source of rBC to the central Himalaya and that the rBC record can be used to identify periods of drought in nearby regions that are upwind of Dasuopu glacier.


2002 ◽  
Vol 35 ◽  
pp. 181-186 ◽  
Author(s):  
Alexey A. Ekaykin ◽  
Vladimir Ya. Lipenkov ◽  
Narcisse I. Barkov ◽  
Jean Robert Petit ◽  
Valerie Masson-Delmotte

AbstractContinuous, detailed isotope (δD and δ18O) profiles were obtained from eight snow pits dug in the vicinity of Vostok station, Antarctica, during the period 1984– 2000. In addition, snow samples taken along the 1km long accumulation-stake profile were measured to determine spatial variability in isotope composition of recent snow. the stacked δD time series spanning the last 55 years shows only weak correlation with the mean annual air temperature recorded at Vostok station. Significant oscillations of both snow accumulation and snow isotope composition with the periods 2.5, 5, 20 and, possibly, ~102 years observed at single points are interpreted in terms of drift of snow-accumulation waves of various scales on the surface of the ice sheet.


2018 ◽  
Vol 18 (16) ◽  
pp. 12345-12361 ◽  
Author(s):  
Christian M. Zdanowicz ◽  
Bernadette C. Proemse ◽  
Ross Edwards ◽  
Wang Feiteng ◽  
Chad M. Hogan ◽  
...  

Abstract. Black carbon aerosol (BC), which is emitted from natural and anthropogenic sources (e.g., wildfires, coal burning), can contribute to magnify climate warming at high latitudes by darkening snow- and ice-covered surfaces, and subsequently lowering their albedo. Therefore, modeling the atmospheric transport and deposition of BC to the Arctic is important, and historical archives of BC accumulation in polar ice can help to validate such modeling efforts. Here we present a > 250-year ice-core record of refractory BC (rBC) deposition on Devon ice cap, Canada, spanning the years from 1735 to 1992. This is the first such record ever developed from the Canadian Arctic. The estimated mean deposition flux of rBC on Devon ice cap for 1963–1990 is 0.2 mg m−2 a−1, which is at the low end of estimates from Greenland ice cores obtained using the same analytical method ( ∼ 0.1–4 mg m−2 a−1). The Devon ice cap rBC record also differs from the Greenland records in that it shows only a modest increase in rBC deposition during the 20th century. In the Greenland records a pronounced rise in rBC is observed from the 1880s to the 1910s, which is largely attributed to midlatitude coal burning emissions. The deposition of contaminants such as sulfate and lead increased on Devon ice cap in the 20th century but no concomitant rise in rBC is recorded in the ice. Part of the difference with Greenland could be due to local factors such as melt–freeze cycles on Devon ice cap that may limit the detection sensitivity of rBC analyses in melt-impacted core samples, and wind scouring of winter snow at the coring site. Air back-trajectory analyses also suggest that Devon ice cap receives BC from more distant North American and Eurasian sources than Greenland, and aerosol mixing and removal during long-range transport over the Arctic Ocean likely masks some of the specific BC source–receptor relationships. Findings from this study suggest that there could be a large variability in BC aerosol deposition across the Arctic region arising from different transport patterns. This variability needs to be accounted for when estimating the large-scale albedo lowering effect of BC deposition on Arctic snow/ice.


2016 ◽  
Author(s):  
Saehee Lim ◽  
Xavier Faïn ◽  
Patrick Ginot ◽  
Vladimir Mikhalenko ◽  
Stanislav Kutuzov ◽  
...  

Abstract. Black carbon (BC), emitted by fossil fuel combustion and biomass burning, is the second largest man-made contributor to global warming after carbon dioxide (Bond et al., 2013). However, limited information exists on its past emissions and atmospheric variability. In this study, we present the first high-resolution record of refractory BC (rBC, including mass concentration and size) reconstructed from ice cores drilled at a high-altitude Eastern European site in Mt. Elbrus (ELB), Caucasus (5115 m a.s.l.). The ELB ice core record, covering the period 1825–2013, reflects the atmospheric load of rBC particles at the ELB site transported from the European continent with a larger rBC input from sources located in the Eastern part of Europe. In the first half of the 20th century, European anthropogenic emissions resulted in a 1.5-fold increase in the ice core rBC mass concentrations as respect to its level in the preindustrial era (before 1850). The rBC mass concentrations increased by a 5-fold in 1960–1980, followed by a decrease until ~ 2000. Over the last decade, the rBC signal for summer time slightly increased. We have compared the signal with the atmospheric BC load simulated using past BC emissions (ACCMIP and MACCity inventories) and taken into account the contribution of different geographical region to rBC distribution and deposition at the ELB site. Interestingly, the observed rBC variability in the ELB ice core record since the 1960s is not in perfect agreement with the simulated atmospheric BC load. Similar features between the ice core rBC record and the best scenarios for the atmospheric BC load support that anthropogenic BC increase in the 20th century is reflected in the ELB ice core record. However, the peak in BC mass concentration observed in ~ 1970 in the ice core is estimated to occur a decade later from past inventories. BC emission inventories for the period 1960s–1970s may be underestimating European anthropogenic emissions. Furthermore, for summer time snow layers of the last 2000s, the slightly increasing trend of rBC deposition likely reflects recent changes in anthropogenic and biomass burning BC emissions in the Eastern part of Europe. Our study highlights that the past changes in BC emissions of Eastern Europe need to be considered in assessing on-going air quality regulation.


2010 ◽  
Vol 55 (12) ◽  
pp. 1169-1177 ◽  
Author(s):  
Bao Yang ◽  
LingYu Tang ◽  
ChunHai Li ◽  
YaJun Shao ◽  
ShiCheng Tao ◽  
...  

2018 ◽  
Author(s):  
Dimitri Osmont ◽  
Michael Sigl ◽  
Anja Eichler ◽  
Theo M. Jenk ◽  
Margit Schwikowski

Abstract. The Amazon Basin is one of the major contributors to global biomass burning emissions. However, regional paleofire trends remain partially unknown. Due to their proximity to the Amazon Basin, Andean ice cores are suitable to reconstruct paleofire trends in South America and improve our understanding of the complex linkages between fires, climate and humans. Here we present the first refractory black carbon (rBC) ice-core record from the Andes as a proxy for biomass burning emissions in the Amazon Basin, derived from an ice core drilled at 6300 m a.s.l. from Illimani glacier in the Bolivian Andes and spanning the entire Holocene back to the last deglaciation 13 000 years ago. The Illimani rBC record displays a strong seasonality with low values during the wet season and high values during the dry season due to the combination of enhanced biomass burning emissions in the Amazon Basin and less precipitation at the Illimani site. Significant positive (negative) correlations were found with reanalyzed temperature (precipitation) data, respectively, for regions in Eastern Bolivia and Western Brazil characterized by a substantial fire activity. rBC long-term trends indirectly reflect regional climatic variations through changing biomass burning emissions as they show higher (lower) concentrations during warm/dry (cold/wet) periods, respectively, in line with climate variations such as the Younger Dryas, the 8.2 ka event, the Holocene Climatic Optimum, the Medieval Warm Period or the Little Ice Age. The highest rBC concentrations of the entire record occurred during the Holocene Climatic Optimum between 7000 and 3000 BC, suggesting that this outstanding warm and dry period caused an exceptional biomass burning activity, unprecedented in the context of the past 13 000 years. Recent rBC levels, rising since 1730 AD in the context of increasing temperatures and deforestation, are similar to those of the Medieval Warm Period. No decrease was observed in the 20th century, in contradiction with the global picture (broken fire hockey stick hypothesis).


2017 ◽  
Author(s):  
Chaoliu Li ◽  
Fangping Yan ◽  
Shichang Kang ◽  
Pengfei Chen ◽  
Xiaowen Han ◽  
...  

Abstract. Black carbon (BC) is the second most important warming component in the atmosphere after CO2. The BC in the Himalayan and Tibetan Plateau (HTP) has shaped the evolution of the Indian Monsoon and accelerated the retreat of glaciers, thereby resulting in serious consequences for billions of Asian residents. Although a number of related studies of this region have been conducted, the BC concentration and deposition indexes remain poorly understood. Because of the presence of arid environments and the potential influence of carbonates from mineral dust (MD), the reported concentrations of BC from the HTP are overestimated. In addition, large discrepancies in the deposition of BC have been reported from lake cores, ice cores, snowpits and models. Therefore, the actual BC concentration and deposition values in this sensitive region must be determined. A comparison between the BC values of acid (HCl) fumigated and original aerosol samples from the HTP showed that the BC concentrations previously reported for the Namco station (central part of the HTP) and the Everest station (northern slope of the central Himalayas) were overestimated by approximately 47 ± 37 % and 35 ± 26 %, respectively, because of the influence of carbonates from MD. Additionally, the organic carbon (OC) levels were overestimated by roughly 22 ± 10 % and 22 ± 12 % for the same reason. Based on previously reported values from these two areas, we propose that the actual BC concentrations at the Namco and Everest stations are 44 ng m−3 and 164 ng m−3, respectively. Second, a comprehensive comparison of the BC deposition levels obtained via different methods indicated that the BC deposits derived from lake cores of the HTP were mainly caused by river sediments transported from the lake basin as a result of climate change (e.g., increases in temperature and precipitation), and fewer BC deposits were related to atmospheric deposition. Therefore, previously reported BC deposition levels from lake cores overestimated the atmospheric deposition of BC in the HTP. Correspondingly, BC deposition derived from snowpit, ice core and model from the HTP were not only agree very well with each other, but also were close to those of other remote areas (e.g., Arctic), implying that the BC deposits calculated from these three methods reflect the actual values. Therefore, based on reported values of snowpits and ice cores, we propose that the BC deposits of the HTP range from 10 mg m−2 a−1 to 25 mg m−2 a−1, with high and low values appearing along the fringes and central areas of the HTP, respectively. The adjusted BC concentration and deposition values in the HTP observed here are critical for performing accurate evaluations of other indexes of BC such as atmospheric distribution, radiative forcing and chemical transport in the HTP.


Sign in / Sign up

Export Citation Format

Share Document