Flexible variable-specific-impulse electric propulsion systems for planetary missions

2006 ◽  
Vol 59 (8-11) ◽  
pp. 931-945 ◽  
Author(s):  
E. Chesta ◽  
D. Estublier ◽  
B. Fallis ◽  
E. Gengembre ◽  
J. Gonzalez del Amo ◽  
...  
2021 ◽  
Vol 2 (4) ◽  
Author(s):  
Samarth Patel ◽  
M.S.R. Bondugula ◽  
Srilochan Gorakula

It was realized earlier that chemical propulsion systems utilize fuel very inefficiently, which greatly limits their lifespan. Electric propulsion is into existence to overcome this limitation of chemical propulsion. The magnetoplasmadynamic (MPD) thruster is presently the most powerful form of electromagnetic propulsion. It is the thruster’s ability to efficiently convert MW of electric power into thrust which gives this technology a potential to perform several orbital as well as deep space missions. MPD thruster offers distinct advantages over conventional types of propulsion for several mission applications with its high specific impulse and exhaust velocities. However, MPD thruster has limitations which limits its operational efficiency and lifetime. In this paper, the thruster limitations are reviewed with respect to three operational limits i.e., the onset phenomenon, cathode lifetime, and thruster overfed limits. The dependence and effects of the operational limits on each other is compared using different empirical models to derive a scaling factor that has been found for each geometrical arrangement; a limiting value exists beyond which the operation becomes highly unsteady and electrode erosion occurs. Along with reviewing and proposing methods to overcome power limitations for MPD thrusters, the relation between exit velocity and ratio of electrode’s radius is also verified using Maecker’s formula.


2021 ◽  
Vol 11 (21) ◽  
pp. 10154
Author(s):  
Daniele Palla ◽  
Gabriele Cristoforetti

In this paper, the laser-accelerated plasma–propulsion system (LAPPS) for a spacecraft is revisited. Starting from the general properties of relativistic propellants, the relations between specific impulse, engine thrust and rocket dynamics have been obtained. The specific impulse is defined in terms of the relativistic velocity of the propellant using the Walter’s parameterization, which is a suitable and general formalism for closed–cycle engines. Finally, the laser-driven acceleration of light ions via Target Normal Sheath Acceleration (TNSA) is discussed as a thruster. We find that LAPPS is capable of an impressive specific impulse Isp in the 105 s range for a laser intensity I0≃1021W/cm2. The limit of Isp≲104 s, which characterizes most of the other plasma-based space electric propulsion systems, can be obtained with a relatively low laser intensity of I0≳1019W/cm2. Finally, at fixed laser energy, the engine thrust can be larger by a factor 102 with respect to previous estimates, making the LAPPS potentially capable of thrust-power ratios in the N/MW range.


Author(s):  
Carsten Arthur Scharlemann ◽  
Martin Tajmar

The increasing application of micro-satellites (from 10 kg up to 100 kg) for a rising number of various missions demands the development of new miniaturized propulsion systems. Micro-satellites have special requirements for the propulsion system such as small mass, reduced volume, and very stringent electrical power constraints. Existing propulsion systems often can not satisfy these requirements. The Space Propulsion Department of the ARC Seibersdorf research dedicated itself to the development and test of various micropropulsion systems for present and future space missions. The portfolio of the systems under development includes electrical and chemical propulsion systems. The covered thrust and specific impulse of the developed propulsion systems ranges from 1μN to 1N and 500 s to 8000 s respectively. Based on the large experience obtained over several decades in the development of Field Emission Electric Propulsion systems (FEEP), several microstructured FEEPs have been developed. The design of these systems is presented as well as preliminary test results and a summarization of the experience obtained during the process of miniaturizing such systems. The development of miniaturized chemical propulsion systems includes a bipropellant and a monopropellant thruster. The bipropellant thruster constitutes the smallest existing 1N thruster utilizing hydrogen peroxide. The thruster system consists of two micopumps for the propellant feed and a microturbine to generate the power for operating the pumps. The monopropellant thruster is a derivative of the bipropellant thruster. It offers a lower specific impulse than the bipropellant system but due to its reduced system complexity it represents also a promising candidate for several future space missions. Both systems utilize rocket grade hydrogen peroxide (green propellant), which is decomposed with the help of an advanced monolithic catalyst. The present paper discusses the design methods and the physical limitations of such chemical propulsion systems with regard to their miniaturization and summarizes their performance evaluation.


2019 ◽  
Vol 124 (1272) ◽  
pp. 151-169 ◽  
Author(s):  
A. R. Chadwick ◽  
B. Dally ◽  
G. Herdrich ◽  
M. Kim

ABSTRACTThis paper presents the results of an experimental campaign to measure thruster-relevant parameters for a high-power (180kW) inductive propulsion system utilising Ar, $ {\textrm{O}}_{2}$ , $ \textrm{N}_{2}$ , and $ \textrm{CO}_{2}$ as propellants. Results from the investigation show that inductive thrusters can make use of these propellants without the severe degradation seen in other electric propulsion systems. Furthermore, the collection of experimental data at powers greater than 100kW provides a reference of performance for the high-power electric propulsion devices intended for missions in the near future. Thrust and specific impulse in inductive systems can be improved by preferentially combining the chemical properties of atomic and molecular propellants. The maximum thrust recorded during these experiments was 7.9N, obtained using a combination of argon and oxygen (0.68 Ar + 0.32 $\textrm{O}_{2}$ ). The combination of argon and molecular propellants also decreased thermal losses within the discharge volume. Specific impulse can be doubled for the same input electric power by combining propellants, and future modifications to the thruster geometry and acceleration mechanism can be used to further improve the performance of such systems.


2016 ◽  
Vol 16 ◽  
pp. 91-103
Author(s):  
Pranav Menon

One of the most recently developed modes of propulsion is electric propulsion. The commonly used chemical propulsion systems have the advantage of a high Specific Impulse as compared to that of ion propulsion systems. However, owing to the efficacy of ion propulsion systems, it is considered the future of space exploration.Electro thermal thrusters produce thrust by using electrical fields to force hot plasma out of the nozzle with certain exit velocity. The plasma’s exit velocity and the system’s thrust capacity, as of now, are insufficient for space travel to be conducted within a reasonable time. I intend to study the possibility of improving the thruster’s performance by using an aerospike nozzle as an exit nozzle which meets the conditions required for the thruster to function appropriately. I shall be studying the plasma plume exit velocity variation with respect to the nozzles used. Also, a thermal analysis will be conducted in order to find the correct material for the nozzle.


2021 ◽  
Vol 20 (3) ◽  
pp. 65-76
Author(s):  
V. V. Salmin ◽  
V. V. Volotsuev ◽  
A. V. Nikitin

An analysis of the mass of the working fluid and motor operating time of electric propulsion systems applied as a part of small spacecraft to carry out maneuvers of maintenance of the low Earth working orbit is carried out. The analysis is carried out for the small spacecraft with the weight in the range from 300 to 1000 kg functioning in working orbits with the height in the range from 400 to 600 km. When carrying out the analysis the values of the specific impulse of the propulsion system in the range from 800 to 1600 sec were accepted. Procedural guidelines for assessing the value of the required characteristic speed depending on the aerodynamic drag force, as well as for assessing the value of mass of the working fluid with account for the value of the specific impulse and defining the motor operating time of the propulsion system depending on the exhaust speed of the working fluid were used. The results of calculations given in the article show that the mass of the working fluid and the motor operating time vary depending on the height of the orbit and the mass of the small spacecraft and allow making quick preliminary assessment of the main design characteristics of the electric propulsion engines used to carry out maneuvers of maintenance of the low Earth working orbit of small spacecraft with different weight dimension characteristics during the prescribed term of active existence.


1970 ◽  
Vol 92 (3) ◽  
pp. 613-620 ◽  
Author(s):  
M. Goodman ◽  
M. M. Yakut

This paper studies the vapor biowaste electric propulsion systems and the impact of the evolving advance life support oxygen recovery cycles and subsystem trade-offs on the biowaste expendable composition and mass balances. The results of a computer analysis of the potential performance of three representative compositions used as propellants in electrothermal thrusters are presented, including propellant specific impulse, chamber heating requirements, and electric power input needed for the attitude control of a typical 12-manned earth-orbiting space station. Reaction product compositions at various locations from chamber to plume are also presented.


Author(s):  
Nicolas Bellomo ◽  
Mirko Magarotto ◽  
Marco Manente ◽  
Fabio Trezzolani ◽  
Riccardo Mantellato ◽  
...  

AbstractREGULUS is an Iodine-based electric propulsion system. It has been designed and manufactured at the Italian company Technology for Propulsion and Innovation SpA (T4i). REGULUS integrates the Magnetically Enhanced Plasma Thruster (MEPT) and its subsystems, namely electronics, fluidic, and thermo-structural in a volume of 1.5 U. The mass envelope is 2.5 kg, including propellant. REGULUS targets CubeSat platforms larger than 6 U and CubeSat carriers. A thrust T = 0.60 mN and a specific impulse Isp = 600 s are achieved with an input power of P = 50 W; the nominal total impulse is Itot = 3000 Ns. REGULUS has been integrated on-board of the UniSat-7 satellite and its In-orbit Demonstration (IoD) is currently ongoing. The principal topics addressed in this work are: (i) design of REGULUS, (ii) comparison of the propulsive performance obtained operating the MEPT with different propellants, namely Xenon and Iodine, (iii) qualification and acceptance tests, (iv) plume analysis, (v) the IoD.


Sign in / Sign up

Export Citation Format

Share Document