Do rhizome severing and shoot defoliation affect clonal growth of Leymus chinensis at ramet population level?

2004 ◽  
Vol 26 (3) ◽  
pp. 255-260 ◽  
Author(s):  
Zhengwen Wang ◽  
Linghao Li ◽  
Xingguo Han ◽  
Ming Dong
Oikos ◽  
1998 ◽  
Vol 83 (1) ◽  
pp. 107 ◽  
Author(s):  
A. Charpentier ◽  
F. Mesléard ◽  
J. D. Thompson ◽  
F. Mesleard

PLoS ONE ◽  
2010 ◽  
Vol 5 (8) ◽  
pp. e12125 ◽  
Author(s):  
Wenming Bai ◽  
Fen Xun ◽  
Yang Li ◽  
Wenhao Zhang ◽  
Linghao Li

2010 ◽  
Vol 61 (8) ◽  
pp. 670 ◽  
Author(s):  
Jun-Feng Wang ◽  
Song Gao ◽  
Ji-Xiang Lin ◽  
Yong-Guang Mu ◽  
Chun-Sheng Mu

Understanding how the biomass production and clone growth of perennial grasses respond to summer warming is crucial for understanding how grassland productivity responds to global warming. Here, we experimentally investigated the effects of summer warming on the biomass production and clonal growth of potted Leymus chinensis in a phytotron. Summer warming significantly decreased the biomass of both parent and daughter shoots, slightly increased the belowground biomass, and lead to a significant increase in root : shoot ratio. Warming significantly increased the total belowground bud number and decreased the daughter shoot number. Importantly, the proportions of each type of bud changed; vertical apical rhizome buds decreased, while horizontal rhizome buds increased in number. The change in proportions of each type of bud is closely related to the decrease in daughter shoot number, rhizome number and length, as well as the decrease in aboveground biomass and increase in belowground biomass. These results indicate that, as a rhizomatous, perennial grass, L. chinensis adopts a selective growth strategy that reduces the energy allocated to aboveground growth and emphasises the development of belowground organs. The implication is that continued summer warming, will further reduce the aboveground biomass production of temperate grasslands dominated by rhizomatous, perennial grasses. Inevitably, species that depend on these grasses for forage will suffer should global climate warming continue.


Author(s):  
Li Liu ◽  
ChengYang Zhou ◽  
Xiao Pei ◽  
LiZhu Guo ◽  
JiaHuan Li ◽  
...  

Purpose The purpose of this study is to examine the effects of nitrogen (N) deposition on clonal growth in a rhizome clonal plant, Leymus chinensis (Trin.) Tzvel. Design/methodology/approach The study established seven N concentration gradients (0, 2, 4, 8, 16, 32 and 64 g N m−2) to simulate the continuous increase in N deposition for the cultivation of L. chinensis seedlings and assess the response mechanism of the cloned L. chinensis plant at different N levels by analyzing the aboveground and belowground plant appearance traits, parent ramets and daughter ramets of resource allocation and biomass allocation. Findings The results of this study showed that the different N treatment levels could promote clonal growth and had certain regularity under the seven treatments. The addition of N could significantly increase the ramet number, rhizome length, rhizome spacer length, biomass of mother ramets, daughter ramets and belowground L. chinensis population when the N addition was greater than 4 g m−2; however, the clonal growth ability of L. chinensis decreased and the rhizome length, ramet number, stem and leaf biomass of daughter ramets and stem biomass of mother ramets significantly decreased when the N addition was greater than 32 g N m−2. Originality/value With global warming, atmospheric N deposition is increasing and it is of great significance to explore the response mechanism of different N levels for the growth of clone plants. This study provides basic data and a theoretical basis for the survival prediction of cloned plants under the background of a global climate change strategy and has important theoretical and practical significance for the scientific management of grasslands in the future.


2020 ◽  
Vol 158 (3) ◽  
pp. S102
Author(s):  
Ryan Suk ◽  
Heetae Suk ◽  
Kalyani Sonawane ◽  
Ashish Deshmukh

2020 ◽  
Vol 139 ◽  
pp. 93-102 ◽  
Author(s):  
MF Van Bressem ◽  
P Duignan ◽  
JA Raga ◽  
K Van Waerebeek ◽  
N Fraijia-Fernández ◽  
...  

Crassicauda spp. (Nematoda) infest the cranial sinuses of several odontocetes, causing diagnostic trabecular osteolytic lesions. We examined skulls of 77 Indian Ocean humpback dolphins Sousa plumbea and 69 Indo-Pacific bottlenose dolphins Tursiops aduncus, caught in bather-protecting nets off KwaZulu-Natal (KZN) from 1970-2017, and skulls of 6 S. plumbea stranded along the southern Cape coast in South Africa from 1963-2002. Prevalence of cranial crassicaudiasis was evaluated according to sex and cranial maturity. Overall, prevalence in S. plumbea and T. aduncus taken off KZN was 13 and 31.9%, respectively. Parasitosis variably affected 1 or more cranial bones (frontal, pterygoid, maxillary and sphenoid). No significant difference was found by gender for either species, allowing sexes to be pooled. However, there was a significant difference in lesion prevalence by age, with immature T. aduncus 4.6 times more likely affected than adults, while for S. plumbea, the difference was 6.5-fold. As severe osteolytic lesions are unlikely to heal without trace, we propose that infection is more likely to have a fatal outcome for immature dolphins, possibly because of incomplete bone development, lower immune competence in clearing parasites or an over-exuberant inflammatory response in concert with parasitic enzymatic erosion. Cranial osteolysis was not observed in mature males (18 S. plumbea, 21 T. aduncus), suggesting potential cohort-linked immune-mediated resistance to infestation. Crassicauda spp. may play a role in the natural mortality of S. plumbea and T. aduncus, but the pathogenesis and population level impact remain unknown.


2019 ◽  
Author(s):  
Claire Beynon ◽  
Nora Pashyan ◽  
Elizabeth Fisher ◽  
Dougal Hargreaves ◽  
Linda Bailey ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document