Curvilinear variable stiffness 3D printing technology for improved open-hole tensile strength

2018 ◽  
Vol 24 ◽  
pp. 378-385 ◽  
Author(s):  
Sadben Khan ◽  
Kazem Fayazbakhsh ◽  
Zouheir Fawaz ◽  
Mahdi Arian Nik

Author(s):  
Tran Linh Khuong ◽  
Zhao Gang ◽  
Muhammad Farid ◽  
Rao Yu ◽  
Zhuang Zhi Sun ◽  
...  

Biomimetic robots borrow their structure, senses and behavior from animals, such as humans or insects, and plants. Biomimetic design is design ofa machine, a robot or a system in engineeringdomain thatmimics operational and/orbehavioral model of a biological system in nature. 3D printing technology has another name as rapid prototyping technology. Currently it is being developed fastly and widely and is applied in many fields like the jewelry, footwear, industrial design, architecture, engineering and construction, automotive, aerospace, dental and medical industry, education, geographic information system, civil engineering, guns. 3D printing technology is able to manufacture complicated, sophisticated details that the traditional processing method cannot manufacture. Therefore, 3D printing technology can be seen as an effective tool in biomimetic, which can accurately simulate most of the biological structure. Fused Deposition Modeling (FDM) is a technology of the typical rapid prototyping. The main content of the article is the focusing on tensile strength test of the ABS-Acrylonitrile Butadiene Styrene material after using Fused Deposition Modeling (FDM) technology, concretization after it’s printed by UP2! 3D printer. The article focuses on two basic features which are Tensile Strength and Determination of flexural properties.



Author(s):  
Huseyn Elcin

PLGA/HA composite biomaterials are prepared, and 3D printing technology is used to make bone scaffolds that can be implanted in the body. Its performance is tested by in vitro physical and biological methods, and its safety is evaluated by animal experiments. Methods: 3D printing technology was used to print the PLGA/HA composite three-dimensional stent biomaterial, and the tensile strength and bending strength of the stent material were tested with reference to GB/T1040 and GB/T9341 to verify its ability to support the proliferation and differentiation of hMSC. The biological evaluation standard (GB/T16886) evaluates the biocompatibility and biosafety of scaffoldmaterials in vitro and in vivo. Results: The porous 3D scaffold made of PLGA/HA composite material was successfully fabricated; the mechanical tensile strength and flexuralstrength of the composite material were 38 MPa and 42 MPa respectively, which were5.35 times and 5.25 times that of normal human cartilage; in vitro cell test It is proved that the 3D scaffold can support the proliferation and differentiation of hMSC into chondrocytes. The results of the biosafety test show that the scaffold meets the national medical device biological evaluation standards.



Mechanik ◽  
2019 ◽  
Vol 92 (4) ◽  
pp. 285-287 ◽  
Author(s):  
Marcin Snopczyński ◽  
Jarosław Kotliński ◽  
Ireneusz Musiałek

With the development of 3D printing technology, there is a development in the use of new printing materials. In practice, it often happens that the constructor does not have full data about the material that he wants to use. The article presents the results of tests of tensile strength of samples printed using the FDM method. 3D printing using the FDM method is widespread, however, the properties of the materials used in this method are still not fully understood. The aim of the research was to obtain information on strength parameters that form the basis for further analyzes.



Materials ◽  
2021 ◽  
Vol 14 (6) ◽  
pp. 1545
Author(s):  
Gyula Ferenc Vasvári ◽  
Dávid Csonka ◽  
Tamás Zsebe ◽  
Ádám Schiffer ◽  
Ivan Samardžić ◽  
...  

Additive manufacturing technologies based on metal melting use materials mainly in powder or wire form. This study focuses on developing a metal 3D printing process based on cold metal transfer (CMT) welding technology, in order to achieve enhanced productivity. Aluminium alloy test specimens have been fabricated using a special 3D printing technology. The probes were investigated to find correlation between the welding parameters and geometric quality. Geometric measurements and tensile strength experiments were performed to determine the appropriate welding parameters for reliable printing. The tensile strength of the product does not differ significantly from the raw material. Above 60 mm height, the wall thickness is relatively constant due to the thermal balance of the welding environment. The results suggest that there might be a connection between the welding parameters and the printing accuracy. It is demonstrated that the deviation of ideal geometry will be the smallest at the maximum reliable welding torch movement speed, while printing larger specimens. As a conclusion, it can be stated that CMT-based additive manufacturing can be a reliable, cost-effective and rapid 3D printing technology with enhanced productivity, but without significant decrease in mechanical stability.



Author(s):  
Jinghe Han ◽  
◽  
Heeju Chae ◽  
Eunju Ko




Author(s):  
Mohd Nazri Ahmad ◽  
Ahmad Afiq Tarmeze ◽  
Amir Hamzah Abdul Rasib


2020 ◽  
Vol 14 (7) ◽  
pp. 470
Author(s):  
Jarosław Kotliński ◽  
Karol Osowski ◽  
Zbigniew Kęsy ◽  
Andrzej Kęsy


Sign in / Sign up

Export Citation Format

Share Document