scholarly journals Evolution of Y2O3 dispersoids during laser powder bed fusion of oxide dispersion strengthened Ni-Cr-Al-Ti γ/γ’ superalloy

2021 ◽  
pp. 102224
Author(s):  
Christoph Kenel ◽  
Anthony De Luca ◽  
Shreyas S. Joglekar ◽  
Christian Leinenbach ◽  
David C. Dunand
2020 ◽  
Vol 360 ◽  
pp. 998-1005 ◽  
Author(s):  
Elodie Vasquez ◽  
Pierre-François Giroux ◽  
Fernando Lomello ◽  
Matthieu Nussbaum ◽  
Hicham Maskrot ◽  
...  

Materials ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3463
Author(s):  
Yangyiwei Yang ◽  
Carlos Doñate-Buendía ◽  
Timileyin David Oyedeji ◽  
Bilal Gökce ◽  
Bai-Xiang Xu

The control of nanoparticle agglomeration during the fabrication of oxide dispersion strengthened steels is a key factor in maximizing their mechanical and high temperature reinforcement properties. However, the characterization of the nanoparticle evolution during processing represents a challenge due to the lack of experimental methodologies that allow in situ evaluation during laser powder bed fusion (LPBF) of nanoparticle-additivated steel powders. To address this problem, a simulation scheme is proposed to trace the drift and the interactions of the nanoparticles in the melt pool by joint heat-melt-microstructure–coupled phase-field simulation with nanoparticle kinematics. Van der Waals attraction and electrostatic repulsion with screened-Coulomb potential are explicitly employed to model the interactions with assumptions made based on reported experimental evidence. Numerical simulations have been conducted for LPBF of oxide nanoparticle-additivated PM2000 powder considering various factors, including the nanoparticle composition and size distribution. The obtained results provide a statistical and graphical demonstration of the temporal and spatial variations of the traced nanoparticles, showing ∼55% of the nanoparticles within the generated grains, and a smaller fraction of ∼30% in the pores, ∼13% on the surface, and ∼2% on the grain boundaries. To prove the methodology and compare it with experimental observations, the simulations are performed for LPBF of a 0.005 wt % yttrium oxide nanoparticle-additivated PM2000 powder and the final degree of nanoparticle agglomeration and distribution are analyzed with respect to a series of geometric and material parameters.


CIRP Annals ◽  
2020 ◽  
Vol 69 (1) ◽  
pp. 193-196
Author(s):  
Brian K. Paul ◽  
Kijoon Lee ◽  
Yujuan He ◽  
Milad Ghayoor ◽  
Chih-hung Chang ◽  
...  

Materials ◽  
2020 ◽  
Vol 13 (3) ◽  
pp. 538 ◽  
Author(s):  
Fabrizia Caiazzo ◽  
Vittorio Alfieri ◽  
Giuseppe Casalino

Laser powder bed fusion (LPBF) can fabricate products with tailored mechanical and surface properties. In fact, surface texture, roughness, pore size, the resulting fractional density, and microhardness highly depend on the processing conditions, which are very difficult to deal with. Therefore, this paper aims at investigating the relevance of the volumetric energy density (VED) that is a concise index of some governing factors with a potential operational use. This paper proves the fact that the observed experimental variation in the surface roughness, number and size of pores, the fractional density, and Vickers hardness can be explained in terms of VED that can help the investigator in dealing with several process parameters at once.


2020 ◽  
Vol 106 (7-8) ◽  
pp. 3367-3379 ◽  
Author(s):  
Shahriar Imani Shahabad ◽  
Zhidong Zhang ◽  
Ali Keshavarzkermani ◽  
Usman Ali ◽  
Yahya Mahmoodkhani ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document