Irrigation amount dominates soil mineral nitrogen leaching in plastic shed vegetable production systems

2021 ◽  
Vol 317 ◽  
pp. 107474
Author(s):  
Haofeng Lv ◽  
Weiwei Zhou ◽  
Jing Dong ◽  
Shipeng He ◽  
Fei Chen ◽  
...  
Agricultura ◽  
2017 ◽  
Vol 14 (1-2) ◽  
pp. 25-36 ◽  
Author(s):  
Manfred Jakop ◽  
Silva Grobelnik Mlakar ◽  
Martina Bavec ◽  
Martina Robačer ◽  
Tjaša Vukmanič ◽  
...  

AbstractIn 2013 and 2014, a long-term trial (which was established in 2007) was conducted at the University Agricultural Centre in Pivola near Hoče. It included different production systems (conventional, integrated, organic, biodynamic), carried out in a field trial with oil pumpkins. The aim of the research was to analyse the effects of different production systems, varieties (hybrid and population variety) and years of production, on formation of oil pumpkin yields. The agricultural practice has been carried out in accordance with the applicable legislations and standards for the individual production system. When sowing, before fertilizing with nitrogen in early June and after the harvest, the amount of soil mineral nitrogen was monitored. We evaluated the number and weight of harvestable, unripe and decayed fruits, and yield of oil seed pumpkins and calculated the agronomic efficiency of the applied nutrients. The results showed that the year of production, the production system and the variety have a significant effect on some fruit characteristics and the yield of oil pumpkin seeds. The content of soil mineral nitrogen in May and September was significantly influenced by the production system and the year. In June, only the production system had a significant effect. The hybrid significantly increased the yields of oil pumpkin seeds in all production systems, even in the year that was less suitable for production. The agronomic efficiency of the applied nutrients in the biodynamic and organic production system is higher or equal than in the conventional production system, similarly, agronomic efficiency is higher in the hybrid compared to the oldest population variety efficiently. A comparable oil pumpkin yield can be expected in biodynamic and organic production, when proper nutrition and well carried out cultivation practices are combined with a new variety, when compared to less sustainable production systems, which often cause damage to the environment.


Geoderma ◽  
2018 ◽  
Vol 326 ◽  
pp. 9-21 ◽  
Author(s):  
Masuda Akter ◽  
Heleen Deroo ◽  
Eddy De Grave ◽  
Toon Van Alboom ◽  
Mohammed Abdul Kader ◽  
...  

1999 ◽  
Vol 50 (2) ◽  
pp. 115-125 ◽  
Author(s):  
Maria Stenberg ◽  
Helena Aronsson ◽  
Börje Lindén ◽  
Tomas Rydberg ◽  
Arne Gustafson

2009 ◽  
Vol 21 ◽  
pp. 13-24 ◽  
Author(s):  
Y. Conrad ◽  
N. Fohrer

Abstract. This study provides results for the optimization strategy of highly parameterized models, especially with a high number of unknown input parameters and joint problems in terms of sufficient parameter space. Consequently, the uncertainty in model parameterization and measurements must be considered when highly variable nitrogen losses, e.g. N leaching, are to be predicted. The Bayesian calibration methodology was used to investigate the parameter uncertainty of the process-based CoupModel. Bayesian methods link prior probability distributions of input parameters to likelihood estimates of the simulation results by comparison with measured values. The uncertainty in the updated posterior parameters can be used to conduct an uncertainty analysis of the model output. A number of 24 model variables were optimized during 20 000 simulations to find the "optimum" value for each parameter. The likelihood was computed by comparing simulation results with observed values of 23 output variables including soil water contents, soil temperatures, groundwater level, soil mineral nitrogen, nitrate concentrations below the root zone, denitrification and harvested carbon from grassland plots in Northern Germany for the period 1997–2002. The posterior parameter space was sampled with the Markov Chain Monte Carlo approach to obtain plot-specific posterior parameter distributions for each system. Posterior distributions of the parameters narrowed down in the accepted runs, thus uncertainty decreased. Results from the single-plot optimization showed a plausible reproduction of soil temperatures, soil water contents and water tensions in different soil depths for both systems. The model performed better for these abiotic system properties compared to the results for harvested carbon and soil mineral nitrogen dynamics. The high variability in modeled nitrogen leaching showed that the soil nitrogen conditions are highly uncertain associated with low modeling efficiencies. Simulated nitrate leaching was compared to more general, site-specific estimations, indicating a higher leaching during the seepage periods for both simulated grassland systems.


Sign in / Sign up

Export Citation Format

Share Document