Artificial forest conversion into grassland alleviates deep-soil desiccation in typical grass zone on China’s Loess Plateau: Regional modeling

2021 ◽  
Vol 320 ◽  
pp. 107608
Author(s):  
Xiao Bai ◽  
Xiaoxu Jia ◽  
Chunlei Zhao ◽  
Ming’an Shao
2008 ◽  
Vol 28 (4) ◽  
pp. 1429-1445 ◽  
Author(s):  
Li Jun ◽  
Chen Bing ◽  
Li Xiaofang ◽  
Zhao Yujuan ◽  
Ciren Yangjing ◽  
...  

2019 ◽  
Vol 50 (5) ◽  
pp. 1453-1462
Author(s):  
Qian Zhao ◽  
Lei Yang ◽  
Xin Wang ◽  
Runcheng Bi ◽  
Qindi Zhang

Abstract Understanding the effects of vegetation on soil moisture is vital to the ecosystem restoration in water-restricted areas. For this study, the effects of introduced revegetation and natural revegetation on soil water (0–1.8 m) were investigated in the Chinese Loess Plateau, which was based on an in situ vegetation removal experiment and two years of soil moisture monitoring. The results indicated that under introduced revegetation, pasture grassland had lower soil moisture but higher temporal variations over the growing season. Compared with abandoned farmlands and native grasslands under natural revegetation, pasture grasslands revealed greater negative effects on deep soil moisture (1–1.8 m), which was difficult to recover following soil desiccation. In contrast, for abandoned farmlands and native grasslands, the surface soil moisture (0–0.4 m) was mainly impacted, which was easily replenished through rainfall events. These outcomes implied that natural revegetation, rather than introduced revegetation, should be the first choice in water-limited regions toward the rehabilitation of degraded ecosystems.


2012 ◽  
Vol 9 (10) ◽  
pp. 12029-12060 ◽  
Author(s):  
Y. Q. Wang ◽  
M. A. Shao ◽  
Z. P. Liu ◽  
C. C. Zhang

Abstract. Negative water balance in soil can lead to soil desiccation and subsequent the formation of a dried soil layer (DSL). Essential progress on DSL temporal change has been hampered by difficulty in collecting deep soil water samples (i.e. > 1000 cm), which are necessary to quantify the real extent of DSL. We collected soil samples up to a depth of 1800 cm and investigated the evolution of soil water content (SWC) and DSL under three vegetation types (C. korshinskii, R. pseudoacacia, apple) in three zones (Ansai, Luochuan, and Changwu) of the Chinese Loess Plateau. As plant growth age increased, SWC, available soil water (ASW), SWC within DSL (DSL-SWC), and quantity of water deficit for DSL (DSL-QWD) showed similar change trends of decreasing at first and then increasing, whereas DSL thickness (DSLT) showed an increasing trend over time. A turning point in soil water change was found for the three vegetation types. In Changwu zone, the turning point, both in and out of DSL, was corresponded to the 17-year-old apple orchard. The period from 9 to 17 yr was vital to maintain the buffering function of deep soil water pool and to avoid the deterioration of soil desiccation because the highest mean decline velocity of ASW and the maximum mean forming velocity of DSLT were 165 mm yr−1 and 168 cm yr−1, respectively. Significant correlations were found between DSLT and growth age and root depth, and between DSL-QWD and root depth, whereas mean DSL-SWC had no significant correlation with either growth year or root depth. Soil water condition was highly dependent on the growth year of the plants. This information provides pertinent reference for water resource management in the Chinese Loess Plateau and possibly in other water-limited regions in the world.


2018 ◽  
Vol 10 (7) ◽  
pp. 2287 ◽  
Author(s):  
Weijie Yu ◽  
Juying Jiao

Soil desiccation of the deep soil layer is considered one of the main limiting factors to achieving sustainable development of ecosystems in the hill and gully Loess Plateau region. In this study, slope croplands were selected as the control, and deep soil water was studied on abandoned slopes, including natural abandoned slopes, Robinia pseudoacacia plantations, and Caragana korshinskii plantations. Then, we explored deep soil water characteristics of different vegetation types and slope aspects and the variation tendencies of deep soil water at different recovery stages. The results showed that there were no significant differences in deep soil water content between sunny and shady slopes, and thus, slope aspect was not the key impact factor affecting deep soil water. Deep soil water content on R. pseudoacacia plantations and C. korshinskii plantations was lower than that on natural abandoned slopes; there were no significant differences in soil water content between the natural abandoned slopes and slope croplands. Soil desiccation did not exist on natural abandoned slopes; thus, natural vegetation restoration is an appropriate way to achieve a sustainable ecosystem with respect to deep soil water. In contrast, soil desiccation intensified until it was difficult for vegetation to obtain available water in the deep soil layer on the plantations; soil desiccation began to appear at the 11–20-year stage, and it became increasingly severe until the deep soil water was close to the wilting coefficient at the ≥30-year stage on R. pseudoacacia plantations. Deep soil water was rapidly consumed, and soil desiccation began to appear at the 1–10-year stage and then was close to the wilting coefficient in the later stages on C. korshinskii plantations. According to the results, the plantations needed to be managed in a timely manner to prevent or reduce soil desiccation.


2021 ◽  
Vol 491 ◽  
pp. 119156
Author(s):  
Binbin Li ◽  
Wantao Zhang ◽  
Shujie Li ◽  
Ju Wang ◽  
Guobin Liu ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Hanyang Tian ◽  
Jiangbo Qiao ◽  
Yuanjun Zhu ◽  
Xiaoxu Jia ◽  
Ming’an Shao

AbstractSoil available phosphorus (SAP) and soil available potassium (SAK) are important elements in the growth of plants. However, limited data are available regarding the vertical distribution of SAP and SAK in deep soil profiles. In this study, we investigated the vertical variations in SAP and SAK in the critical zone on the Loess Plateau (50–200 m), China, by using classical statistical and geostatistical methods. The soil samples were collected from the top of the soil profile down to the bedrock by soil core drilling at five typical sites. SAP decreased throughout the profile. Whereas the SAK exhibited an increasing trend at all sites. The mean SAP concentration ranged from 0.94 to 32.56 mg kg–1 at the sampling sites and the SAK concentration ranged from 44.51 to 229.31 mg kg–1. At all of the sampling sites, SAK was significantly positively correlated with the depth and clay content, but there was a significantly negative correlation between the SAK and the sand content. The exponential model could fit most variograms of SAP and SAK at all sampling sites. The results obtained in this study to improve our comprehension of the SAP or SAK distribution conditions on the Loess Plateau, which is important for reasonable fertilizer application and vegetation planting practices.


2018 ◽  
Vol 19 (3) ◽  
pp. 1179-1189 ◽  
Author(s):  
Bowei Yu ◽  
Gaohuan Liu ◽  
Qingsheng Liu ◽  
Chong Huang ◽  
He Li ◽  
...  

2016 ◽  
Vol 20 (8) ◽  
pp. 3309-3323 ◽  
Author(s):  
Xuening Fang ◽  
Wenwu Zhao ◽  
Lixin Wang ◽  
Qiang Feng ◽  
Jingyi Ding ◽  
...  

Abstract. Soil moisture in deep soil layers is a relatively stable water resource for vegetation growth in the semi-arid Loess Plateau of China. Characterizing the variations in deep soil moisture and its influencing factors at a moderate watershed scale is important to ensure the sustainability of vegetation restoration efforts. In this study, we focus on analyzing the variations and factors that influence the deep soil moisture (DSM) in 80–500 cm soil layers based on a soil moisture survey of the Ansai watershed in Yan'an in Shanxi Province. Our results can be divided into four main findings. (1) At the watershed scale, higher variations in the DSM occurred at 120–140 and 480–500 cm in the vertical direction. At the comparable depths, the variation in the DSM under native vegetation was much lower than that in human-managed vegetation and introduced vegetation. (2) The DSM in native vegetation and human-managed vegetation was significantly higher than that in introduced vegetation, and different degrees of soil desiccation occurred under all the introduced vegetation types. Caragana korshinskii and black locust caused the most serious desiccation. (3) Taking the DSM conditions of native vegetation as a reference, the DSM in this watershed could be divided into three layers: (i) a rainfall transpiration layer (80–220 cm); (ii) a transition layer (220–400 cm); and (iii) a stable layer (400–500 cm). (4) The factors influencing DSM at the watershed scale varied with vegetation types. The main local controls of the DSM variations were the soil particle composition and mean annual rainfall; human agricultural management measures can alter the soil bulk density, which contributes to higher DSM in farmland and apple orchards. The plant growth conditions, planting density, and litter water holding capacity of introduced vegetation showed significant relationships with the DSM. The results of this study are of practical significance for vegetation restoration strategies, especially for the choice of vegetation types, planting zones, and proper human management measures.


Water ◽  
2019 ◽  
Vol 11 (10) ◽  
pp. 2183 ◽  
Author(s):  
Zhiqiang Zhang ◽  
Bingcheng Si ◽  
Huijie Li ◽  
Min Li

Piston and preferential water flow are viewed as the two dominant water transport mechanisms regulating terrestrial water and solute cycles. However, it is difficult to accurately separate the two water flow patterns because preferential flow is not easy to capture directly in field environments. In this study, we take advantage of the afforestation induced desiccated deep soil, and directly quantify piston and preferential water flow using chloride ions (Cl−) and soil water profiles, in four deforested apple orchards on the Loess Plateau. The deforestation time ranged from 3 to 15 years. In each of the four selected orchards, there was a standing orchard that was planted at the same time as the deforested one, and therefore the standing orchard was used to benchmark the initial Cl− and soil water profiles of the deforested orchard. In the deforested orchards, piston flow was detected using the migration of the Cl− front, and preferential flow was measured via soil water increase below the Cl− front. Results showed that in the desiccated zone, Cl− migrated to deeper soil after deforestation, indicating that the desiccated soil layer formed by the water absorption of deep-rooted apple trees did not completely inhibit the movement of water. Moreover, there was an evident increase in soil water below the downward Cl− front, directly demonstrating the existence of preferential flow in deep soil under field conditions. Although pore water velocity was small in the deep loess, preferential water flow still accounted for 34–65% of total infiltrated water. This study presented the mechanisms that regulate movement of soil water following deforestation through field observations and advanced our understanding of the soil hydrologic process in deep soil.


Sign in / Sign up

Export Citation Format

Share Document