Simulation of efficient irrigation management strategies for grain sorghum production over different climate variability classes

2019 ◽  
Vol 170 ◽  
pp. 49-62 ◽  
Author(s):  
Kritika Kothari ◽  
Srinivasulu Ale ◽  
James P. Bordovsky ◽  
Kelly R. Thorp ◽  
Dana O. Porter ◽  
...  
2021 ◽  
Author(s):  
Maria Paula Mendes ◽  
Ana Paula Falcão ◽  
Magda Matias ◽  
Rui Gomes

<p>Vineyards are crops whose production has a major economic impact in the Portuguese economy (~750 million euros) being exported worldwide. As the climate models project a larger variability in precipitation regime, the water requirements of vineyards can change and drip irrigation can be responsible for salt accumulation in the root zone, especially when late autumn and winter precipitation is not enough to leach salts from the soil upper horizons, turning the soil unsuitable for grape production.</p><p>The aim of this work is to present a methodology to map surface soil moisture content (SMC) in a vineyard, (40 hectares) based on the application of two classification algorithms to satellite imagery (Sentinel 1 and Sentinel 2). Two vineyard plots were considered and three field campaigns (December 2017, January 2018 and May 2018) were conducted to measure soil moisture contents (SMC). A geostatistical method was used to estimate the SM class probabilities according to a threshold value, enlarging the training set (i.e., SMC data of the two plots) for the classification algorithms. Sentinel-1 and Sentinel-2 images and terrain attributes fed the classification algorithms. Both methods, Random Forest and Logistic Regression, classified the highest SMC areas, with probabilities above 14%, located close to a stream at the lower altitudes.</p><p>RF performed very well in classifying the topsoil zones with lower SMC during the autumn-winter period (F-measure=0.82).</p><p>This delineation allows the prevention of the occurrence of areas affected by salinization, indicating which areas will need irrigation management strategies to control the salinity, especially under climate change, and the expected increase in droughts.</p>


Author(s):  
S. Selvakumar ◽  
S. Sakthivel ◽  
Akihiko Kamoshita ◽  
R. Babu ◽  
S. Thiyageshwari ◽  
...  

A field experiment was conducted at Tamil Nadu Agricultural University, Agricultural College and Research Institute, Madurai, Tamil Nadu, India, during summer 2019 to study about the changes in physiological parameters of rice under various establishment and water management strategies and to find out the suitable method of rice establishment and irrigation management practices for tank irrigated command areas during water scarcity situation. Field experiment comprised of four establishment methods in combination with four irrigation management strategies. Medium duration fine grain rice variety TKM 13 was used for the study. Results of the study revealed that machine transplanting under unpuddled soil combined with irrigation after formation of hairline crack recorded improved physiological parameters and yield. It was on par with machine transplanting under unpuddled soil combined with irrigation when water level reaches 5 cm below soil surface. Higher gross return, net return and B:C ratio were observed with machine transplanting under unpuddled soil combined with irrigation after formation of hairline crack. This was followed by machine transplanting under unpuddled soil combined with irrigation when water level reaches 5 cm below soil. Hence, the result of study concluded that machine transplanting under unpuddled soil combined with irrigation when water level reaches 5 cm below soil surface can be recommended as the suitable technology for the farmers of tank irrigated command area to get higher return with minimum use of resources under water scarcity situation.


2020 ◽  
Vol 46 (1) ◽  
pp. 9-13
Author(s):  
Ricardo Nunes Cabral ◽  
Waldir Aparecido Marouelli ◽  
Adalberto C. Café-Filho

ABSTRACT Verticillium wilt in eggplants is a root disease of difficult control. In this study, we report the relationship between soil water availability and the disease intensity in order to identify management strategies that are unfavourable to the pathogen and capable of reducing the disease progression and the damage caused by it. Four irrigation management strategies were compared in soil infested or not infested with Verticillium dahliae, which consisted of: irrigating when the available soil moisture was maintained at 90% (WA90%), 55% (WA55%) and 20% (WA20%) during the entire growing cycle, and kept at 20% in the vegetative stage, and at 90% in the production stage (WA20-90%). Experimental design was in randomized blocks, including eight treatments in factorial arrangement (4x2) and three replicates. The management strategy WA20-90% led to a significant reduction in the disease severity and in the extent of xylem colonization by the pathogen. The dry mass of plants in infested soil was 12% lower than that of control treatments and was higher with the irrigation strategy WA90% than with WA55% or WA20%. The strategy WA20-90% was efficient in reducing the disease with no significant reduction in dry mass.


2020 ◽  
Vol 71 (4) ◽  
pp. 379
Author(s):  
Xuemin Wang ◽  
Emma Mace ◽  
Colleen Hunt ◽  
Alan Cruickshank ◽  
Graeme Hammer ◽  
...  

Grown in water-limited environments, sorghum (Sorghum bicolor (L.) Moench) is often exposed to water deficits of varying extent and timing. One of the impacts of water stress on sorghum production is lodging; however, there has been no published study quantifying the temporal and spatial frequency and severity of lodging in grain sorghum in Australia. In this study, we investigated the frequency and severity of lodging, using a dataset of 83 advanced yield-testing trials of the sorghum pre-breeding program grown in the seven major sorghum-production environments in Australia over 14 summer growing seasons. Lodging occurred in most production regions but with varying frequency and severity. Lodging was significantly greater in regions that were more prone to water stress (e.g. Central Highlands in Queensland) and significantly lower in regions that were less likely to suffer from water stress (e.g. Liverpool Plains in northern New South Wale) compared with the overall average across regions. The severity of lodging also varied across regions, with the most severe lodging (>20%) occurring in Central Highlands and Western Downs in Queensland. In addition, seasonal patterns of lodging frequency and severity were also observed. Over the 14 growing seasons, the frequency of lodging varied from 0% to 100%, with the most severe lodging (>20%) observed in 2005, 2016 and 2017. The Southern Oscillation Index explained 29% of the seasonal variation in lodging frequency. The findings of this study clearly support a link between lodging incidence and water stress across regions and seasons. Our data also showed that although there was a substantial turnover of commercial hybrids during the period of this study, the level of resistance to lodging appeared not to have improved. It is possible that this is due to plant breeders trading off improvements in lodging resistance to increase grain yield.


Sign in / Sign up

Export Citation Format

Share Document