Predicting the impacts of climate change—A case study of paddy irrigation water requirements in Sri Lanka

2007 ◽  
Vol 93 (1-2) ◽  
pp. 19-29 ◽  
Author(s):  
C.S. De Silva ◽  
E.K. Weatherhead ◽  
J.W. Knox ◽  
J.A. Rodriguez-Diaz
2013 ◽  
Vol 4 (4) ◽  
pp. 422-439 ◽  
Author(s):  
S. Shrestha ◽  
B. Gyawali ◽  
U. Bhattarai

This study highlights the spatial and temporal impacts of climate change on rice–wheat cropping systems, focusing on irrigation water requirement (IWR) in the Bagmati River Basin of Nepal. The outputs from a general circulation model (HadCM3) for two selected scenarios (A2 and B2) of IPCC and for three time periods (2020s, 2050s, and 2080s) have been downscaled and compared to a baseline climatology. CROPWAT 8.0 model is used to estimate the water requirements. IWRs show different trends in different physiographic regions and different growth stages of rice and wheat. A decreasing trend of IWRs in the Mid Hills and the High Hills indicates that farmer-based small irrigation schemes are sufficient to meet the requirements. However, in the Terai region, where there is an increasing trend in IWRs, the deficit volume of water needs to be supplied from potential large-scale irrigation schemes.


2015 ◽  
Vol 7 (1) ◽  
pp. 39-51 ◽  
Author(s):  
Ali Fares ◽  
Ripendra Awal ◽  
Samira Fares ◽  
Alton B. Johnson ◽  
Hector Valenzuela

The impact of potential future climate change scenarios on the irrigation water requirements (IRRs) of two major agricultural crops (coffee and seed corn) in Hawai'i was studied using the Irrigation Management System (IManSys) model. In addition to IRRs calculations, IManSys calculates runoff, deep percolation, canopy interception, and effective rainfall based on plant growth parameters, site specific soil hydrological properties, irrigation system efficiency, and long-term daily weather data. Irrigation water requirements of two crops were simulated using historical climate data and different levels of atmospheric CO2 (330, 550, 710 and 970 ppm), temperature (+1.1 and +6.4 °C) and precipitation (±5, ±10 and ±20%) chosen based on the Intergovernmental Panel on Climate Change (IPCC) AR4 projections under reference, B1, A1B1 and A1F1 emission scenarios. IRRs decreased as CO2 emission increased. The average percentage decrease in IRRs for seed corn is higher than that of coffee. However, runoff, rain canopy interception, and deep percolation below the root zone increased as precipitation increased. Canopy interception and drainage increased with increased CO2 emission. Evapotranspiration responded positively to air temperature rise, and as a result, IRRs increased as well. Further studies using crop models will predict crop yield responses to these different irrigation scenarios.


2007 ◽  
Vol 7 (3) ◽  
pp. 149-159 ◽  
Author(s):  
J. A. Rodríguez Díaz ◽  
E. K. Weatherhead ◽  
J. W. Knox ◽  
E. Camacho

2021 ◽  
Vol 11 (21) ◽  
pp. 10379
Author(s):  
Mohammed El Hafyani ◽  
Ali Essahlaoui ◽  
Kimberley Fung-Loy ◽  
Jason A. Hubbart ◽  
Anton Van Rompaey

This work was undertaken to develop a low-cost but reliable assessment method for agricultural water requirements in semi-arid locations based on remote sensing data/techniques. In semi-arid locations, water resources are often limited, and long-term water consumption may exceed the natural replenishment rates of groundwater reservoirs. Sustainable land management in these locations must include tools that facilitate assessment of the impact of potential future land use changes. Agricultural practices in the Boufakrane River watershed (Morocco) were used as a case study application. Land use practices were mapped at the thematic resolution of individual crops, using a total of 13 images generated from the Sentinel-2 satellites. Using a supervised classification scheme, crop types were identified as cereals, other crops followed by cereals, vegetables, olive trees, and fruit trees. Two classifiers were used, namely Support vector machine (SVM) and Random forest (RF). A validation of the classified parcels showed a high overall accuracy of 89.76% for SVM and 84.03% for RF. Results showed that cereal is the most represented species, covering 8870.43 ha and representing 52.42% of the total area, followed by olive trees with 4323.18 ha and a coverage rate of 25%. Vegetables and other crops followed by cereals cover 1530.06 ha and 1661.45 ha, respectively, representing 9.4% and 9.8% of the total area. In the last rank, fruit trees occupy only 3.67% of the total area, with 621.06 ha. The Food and Agriculture Organization (FAO) free software was used to overlay satellite data images with those of climate for agricultural water resources management in the region. This process facilitated estimations of irrigation water requirements for all crop types, taking into account total potential evapotranspiration, effective rainfall, and irrigation water requirements. Results showed that olive trees, fruit trees, and other crops followed by cereals are the most water demanding, with irrigation requirements exceeding 500 mm. The irrigation requirements of cereals and vegetables are lower than those of other classes, with amounts of 300 mm and 150 mm, respectively.


Sign in / Sign up

Export Citation Format

Share Document