scholarly journals Measurement and simulation of the water storage pit irrigation trees evapotranspiration in the Loess Plateau

2019 ◽  
Vol 226 ◽  
pp. 105804
Author(s):  
Wei Meng ◽  
Xihuan Sun ◽  
Juanjuan Ma ◽  
Xianghong Guo ◽  
Tao Lei ◽  
...  
Forests ◽  
2020 ◽  
Vol 11 (8) ◽  
pp. 793
Author(s):  
Yan Mu ◽  
Di Wang ◽  
Yanping Wang

Knowledge of changes in soil-water storage (SWS) at multiple scales in apple orchards is important for formulating policies for the scientific management and sound planning of apple plantations on the Loess Plateau in China. In this study, we measured precipitation, partitioned evapotranspiration (ET) into canopy interception, transpiration, and soil evaporation, and calculated the changes in SWS using the water-balance method at multiple scales in two neighbouring apple orchards (8 and 18 years old) on the Loess Plateau from May to September in 2013, 2014, 2015, and 2016. The results showed that ET was consistently lower for the 8- than the 18-year-old orchard in each year at the same scale (p < 0.05). The changes in SWS differed between the two orchards at the same scale, but the trends of change were similar in each year. The trend of the change in SWS at the same scale differed amongst the years for both orchards. The maximum supply of water from soil reservoirs for the two orchards also differed at different scales in each year and was higher at a daily cumulative scale than a monthly and annual scale in 2013, 2014, and 2016. The daily cumulative scale was thus a more suitable scale for representing the maximum contribution of the soil reservoir to supply water for the growth of the orchards during the study periods. Changes in SWS at a daily cumulative scale should be considered when assessing the effect of apple orchards on regional soil reservoirs on the Loess Plateau or in other water-limited regions.


Soil Research ◽  
2017 ◽  
Vol 55 (3) ◽  
pp. 285 ◽  
Author(s):  
Xiaolong Ren ◽  
Peng Zhang ◽  
Xiaoli Liu ◽  
Shahzad Ali ◽  
Xiaoli Chen ◽  
...  

Rain-harvesting planting can improve crop biomass and enhance precipitation use efficiency in rainfed semiarid areas. In this study, field trials were conducted during summer 2007–2010 to determine the impacts of different mulching patterns in rainfall harvesting planting on spring corn growth and development in a typical semihumid dryland farming area of the Loess Plateau in China, which is characterised by spring droughts. Rain-harvesting ridges and planting furrows were mulched with 8% biodegradable film (RCSB), liquid film (RCSL), or not mulched (RCSN), and bare land drilling without mulching served as the control (CF). We found that the rain-harvesting effects of ridges and the evaporation-inhibiting and moisture-conserving effects of mulching materials during the spring corn growing season significantly increased water storage in the 0–100cm soil layer (P<0.05) compared with CF, where mulching was more beneficial than the non-mulching treatments. In the 100–200cm soil layers, there were no significant effects (P>0.05) of the treatments on water storage. During 2007–2010, the average plant height increased by 26.6%, 15.4%, and 11.1% under RCSB, RCSL, and RCSN relative to CF respectively, whereas the per plant biomass increased by 26.6%, 15.4%, and 11.1% under these treatments, and the grain yield increased by 32.3%, 17.5%, and 15.0%. Therefore, in the semihumid dryland farming areas of the Loess Plateau, rain-harvesting planting greatly increased the growth, development, and dry matter accumulation by spring corn, thereby enhancing its biomass yield, whereas the plastic-covered ridges and furrows mulched with biodegradable films substantially increased the yield-enhancing effects.


2015 ◽  
Vol 529 ◽  
pp. 685-695 ◽  
Author(s):  
Xuezhang Li ◽  
Ming’an Shao ◽  
Xiaoxu Jia ◽  
Xiaorong Wei ◽  
Liang He

2009 ◽  
Vol 96 (2) ◽  
pp. 299-306 ◽  
Author(s):  
Haishen Lü ◽  
Yonghua Zhu ◽  
Todd H. Skaggs ◽  
Zhongbo Yu

2018 ◽  
Vol 8 (1) ◽  
Author(s):  
Ruixue Cao ◽  
Xiaoxu Jia ◽  
Laiming Huang ◽  
Yuanjun Zhu ◽  
Lianhai Wu ◽  
...  

2014 ◽  
Vol 138 ◽  
pp. 10-16 ◽  
Author(s):  
Fan Jun ◽  
Gao Yu ◽  
Wang Quanjiu ◽  
Sukhdev S. Malhi ◽  
Li Yangyang

Sign in / Sign up

Export Citation Format

Share Document