Irrigation performance under alternative field designs in a spate irrigation system with large field dimensions

2020 ◽  
Vol 231 ◽  
pp. 105989 ◽  
Author(s):  
E. Fadul ◽  
I. Masih ◽  
C. De Fraiture ◽  
F.X. Suryadi
1993 ◽  
Vol 32 (2) ◽  
pp. 226-228
Author(s):  
Zakir Hussain

The book; under review provides a valuable account of the issues and factors in managing the irrigation system, and presents a lucid and thorough discussion on the performance of the irrigation bureaucracies. It comprises two parts: the first outlines the factors affecting irrigation performance under a wide range of topics in the first five chapters. In Chapter One, the authors have attempted to assess the performance of the irrigation bureaucracies, conceptualise irrigation management issues, and build an empirical base for analysis while drawing upon the experience of ten country cases in Asia, Africa, and Latin America. The Second Chapter focuses on the variations in the management structures identified and the types of irrigation systems; and it defines the variables of the management structures. The activities and objectives of irrigation management are discussed in Chapter Three. The objectives include: greater production and productivity of irrigation projects; improved water distribution; reduction in conflicts; greater resource mobilisation and a sustained system performance. The authors also highlight the performance criterion in this chapter. They identify about six contextual factors which affect the objectives and the performance of irrigation, which are discussed in detail in Chapter Four. In Chapter Five, some organisational variables, which would lead to improvements in irrigation, are examined.


2017 ◽  
Vol 8 (2) ◽  
pp. 564-568 ◽  
Author(s):  
M. Martello ◽  
A. Berti ◽  
G. Lusiani ◽  
A. Lorigiola ◽  
F. Morari

The main goal of this study was assessing the technological and agronomic performances of a centre pivot Variable Rate Irrigation (VRI) system. The study was conducted in 2015 on a 16-ha field cultivated with maize. Irrigation was scheduled in three Management Zones according to data provided by a real-time monitoring system based on an array of soil moisture sensors. First results demonstrated the potential benefits of the VRI system on irrigation performance however a multiyear comparison is requested for evaluating the response to climate variability. VRI resulted in yields comparable to the business-as-usual regime but through a noticeable reduction in irrigation volumes.


Author(s):  
Zulhadi Lalu

Irrigation facilities is one of the key factors in farming, especially for food crop farming, including rice. A smallscale irrigation system has an area of less than 500 hectares, and it is the backbone of family food security which in turn will lead to national food security. Damage irrigation system networks will threaten food production increase. In the future, irrigation infrastructure must be better managed so that agricultural sector can realize agricultural diversification, conserve wider irrigation system and maintain local wisdom and social capital in irrigation management. The objective of the paper is to analyze performance, problems and solutions of small irrigation systems in Indonesia, including small irrigation concepts and understanding, small irrigation performance and development, small irrigation development policies, factors affecting smallscale irrigation development, investments, and prospects. The paper also compares various performances, problems and solutions of small irrigation systems in other countries. Small scale irrigation performance is often better than large-scale irrigation, in the sense of water availability throughout the year and equitable water distribution for all service areas


Author(s):  
Mohamed Elsayed Elhagarey ◽  
Mohamed M. Hushki ◽  
Szabo E. Istvan

MATLAB will be utilized to validate the various irrigation systems and report it; the air temperature, wind, and humidity will be member functions to improve the efficiency of irrigation performance before the irrigation process, and the fuzzy information system consists of fuzzy rules, which are derived from information of experts or from input-output learning of the system. Rules mimic human reasoning. Mamdani method is mostly applied in the fuzzy inference technique, and the generalized bell function is used for both of temperature and wind where the triangular function used for humidity. The principles were based on the last experiments and personal experiences, and the output will change into a crisp value from this procedure of defuzzification. There are many different methods to do defuzzification, but the most common technique is centroid method. The resultant surface graphic is enough to monitor, validate, and report the irrigation system efficiency to execute and schedule the irrigation practice management.


Water ◽  
2020 ◽  
Vol 12 (8) ◽  
pp. 2276
Author(s):  
David Lozano ◽  
Natividad Ruiz ◽  
Rafael Baeza ◽  
Juana I. Contreras ◽  
Pedro Gavilán

Developing an appropriate irrigation schedule is essential in order to save water while at the same time maintaining high crop yields. The standard procedures of the field evaluation of distribution uniformity do not take into account the effects of the filling and emptying phases of the irrigation system. We hypothesized that, in sloping sandy soils, when short drip irrigation pulses are applied it is important to take into account the total water applied from the beginning of irrigation until the emptying of the irrigation system. To compute distribution uniformity, we sought to characterize the filling, stable pressure, and emptying phases of a standard strawberry irrigation system. We found that the shorter the time of the irrigation pulse, the worse the distribution uniformity and the potential application efficiency or zero deficit are. This effect occurs because as the volume of water applied during filling and emptying phases increases, the values of the irrigation performance indicators decrease. Including filling and emptying phases as causes of non-uniformity has practical implications for the management of drip irrigation systems in sloping sandy soils.


2021 ◽  
Vol 13 (14) ◽  
pp. 7967
Author(s):  
Usha Poudel ◽  
Haroon Stephen ◽  
Sajjad Ahmad

Southern California’s Imperial Valley (IV) faces serious water management concerns due to its semi-arid environment, water-intensive crops and limited water supply. Accurate and reliable irrigation system performance and water productivity information is required in order to assess and improve the current water management strategies. This study evaluates the spatially distributed irrigation equity, adequacy and crop water productivity (CWP) for two water-intensive crops, alfalfa and sugar beet, using remotely sensed data and a geographical information system for the 2018/2019 crop growing season. The actual crop evapotranspiration (ETa) was mapped in Google Earth Engine Evapotranspiration Flux, using the linear interpolation method in R version 4.0.2. The approx() function in the base R was used to produce daily ETa maps, and then totaled to compute the ETa for the whole season. The equity and adequacy were determined according to the ETa’s coefficient of variation (CV) and relative evapotranspiration (RET), respectively. The crop classification was performed using a machine learning approach (a random forest algorithm). The CWP was computed as a ratio of the crop yield to the crop water use, employing yield disaggregation to map the crop yield, using county-level production statistics data and normalized difference vegetation index (NDVI) images. The relative errors (RE) of the ETa compared to the reported literature values were 7–27% for alfalfa and 0–3% for sugar beet. The average ETa variation was low; however, the spatial variation within the fields showed that 35% had a variability greater than 10%. The RET was high, indicating adequate irrigation; 31.5% of the alfalfa and 12% of the sugar beet fields clustered in the Valley’s central corner were consuming more water than their potential visibly. The CWP showed wide variation, with CVs of 32.92% for alfalfa and 25.4% for sugar beet, signifying a substantial scope for CWP enhancement. The correlation between the CWP, ETa and yield showed that reducing the ETa to approximately 1500 mm for alfalfa and 1200 mm for sugar beet would help boost the CWP without decreasing the yield, which is nearly equivalent to 44.52M cu. m (36,000 acre-ft) of water. The study’s results could help water managers to identify poorly performing fields where water conservation and management could be focused.


2008 ◽  
Vol 57 (1) ◽  
pp. 41-56 ◽  
Author(s):  
Abraham Mehari ◽  
Bart Schultz ◽  
Herman Depeweg ◽  
Pieter de Laat

2011 ◽  
Vol 98 (11) ◽  
pp. 1719-1726 ◽  
Author(s):  
Hans Charles Komakech ◽  
Marloes L. Mul ◽  
Pieter van der Zaag ◽  
Filbert B.R. Rwehumbiza

2019 ◽  
Vol 11 (1) ◽  
Author(s):  
Elí Gaiska Salomón-Guzmán ◽  
◽  
Laura Alicia Ibáñez-Castillo ◽  
Jacinta Palerm-Viqueira ◽  
◽  
...  

Sign in / Sign up

Export Citation Format

Share Document