Comparison of enamel surface roughness and color alteration after bracket debonding and polishing with 2 systems: A split-mouth clinical trial

Author(s):  
Célia Regina Maio Pinzan-Vercelino ◽  
Ana Carla Souza Costa ◽  
Júlio Araújo Gurgel ◽  
Karina Maria Salvatore Freitas
2020 ◽  
Vol 14 (02) ◽  
pp. 299-305
Author(s):  
Kiatanan Sugsompian ◽  
Ratchawan Tansalarak ◽  
Thosapol Piyapattamin

Abstract Objective This study aimed to compare the enamel surface roughness created by four polishing methods after debonding, by using scanning electron microscopy (SEM) and atomic force microscopy (AFM). Materials and Methods Four experimental polishing groups (Sof-Lex disc, SD; sandblaster, SB; tungsten carbide bur, TB; and white stone bur, WB) and one control group were selected from 100 premolars (n = 20/group). The experimental teeth were bonded with a bracket, thermocycled, and debonded. Residual adhesive was removed by either of the respective methods. Pre and postdebonding root mean square (Rq) values were obtained from AFM evaluations. All specimens were examined and evaluated with SEM using a modified enamel surface index (modified ESI). Statistical Analysis Differences among the polishing methods were compared with analysis of variance and Fisher’s least significant difference test at p < 0.05. Results Both microscopic evaluations indicated that the surface with the greatest roughness herein belonged to the SD group, followed by that for SB, TB, and WB groups. AFM measurements indicated a maximum postdebonding Rq herein for the WB group and a significantly greater surface roughness for the TB and WB groups than for the SD and SB groups. Among the experimental groups, SEM followed by modified ESI evaluations revealed similar data to those obtained with AFM. Significant differences were seen among all paired groups, except for that between the SB and TB groups. Conclusion Within the limitations of this study, all four polishing methods were concluded to be clinically acceptable for removing residual orthodontic adhesives.


2020 ◽  
Vol 14 (01) ◽  
pp. 161-170
Author(s):  
Pedro Luiz Santos Tomaz ◽  
Letícia Almeida de Sousa ◽  
Kayanne Freire de Aguiar ◽  
Thales de Sá Oliveira ◽  
Marcelo Henrick Maia Matochek ◽  
...  

Abstract Objectives This in vitro study investigated the remineralization potential of 1450 ppm, fluoride-containing toothpastes containing different active remineralization agents after cariogenic challenge with pH cycling. The enamel surface roughness after brushing and the chemical and physical characteristics of the toothpastes tested were also analyzed. Materials and Methods Fifty-six bovine enamel blocks were obtained (4 × 4 × 6 mm) and divided into three thirds: intact (untreated), demineralized (artificial caries lesion), and treated (caries lesion, pH cycling, and brushing with dentifrices). Seven commercially available fluoride toothpastes (1450 ppm F): three with anti-erosion claims (Candida Professional [CPP], Colgate Total 12 Daily Repair [CDR], Regenerate Enamel Science [RES]); three with desensitizing claims (Bianco Pro Clinical [BPP], Elmex Sensitive [ESS], and Regenerador Diário DentalClean [RDC]); and one standard regular-fluoride toothpaste Colgate Total 12 (CTT) were selected. During pH cycling (demineralization 6 h/remineralization 18 h) for 7 days, the treated third was brushed with the different dentifrices for 10 minutes in a brushing machine before immersion in a remineralizing solution. The Knoop hardness (25 g, 10 second of the surface, and longitudinal section were then evaluated at eight depths (10 to 330 μm). Mean and percentage of surface hardness recovery (% SHR) were calculated. Surface enamel roughness (Ra) was also evaluated. The pH, %weight of particles, zeta potential, and polydispersity index of toothpaste slurries were also evaluated. Statistical Analysis Data were statistically analyzed (ANOVA/Tukey, 5%). Results The %SHR of CPP was significantly lower than the others (p < 0.05). The enamel subsurface was more effectively remineralized when treated with BPP, ESS, and RDC. The surface roughness was higher when the demineralized third was treated with CTT, RDC, and RES and after the cariogenic challenge (p < 0.05). For some of the products tested, there was no relationship between surface remineralization and subsurface remineralization. Although toothpastes CPP and RDC present the lowest %SHR means, both products effectively remineralize within the subsurface carious lesion. Regression analysis demonstrated no strong correlations of the enamel surface roughness with the chemical and physical parameters. Conclusions Most but not all the fluoride toothpastes were able to remineralize the enamel surface. No specific chemical or physical parameter alone correlated with the surface roughness.


2018 ◽  
Vol 1073 ◽  
pp. 032027
Author(s):  
I Armansyah ◽  
A Noerdin ◽  
B Irawan ◽  
A Soufyan

2006 ◽  
Vol 7 (1) ◽  
pp. 25-34 ◽  
Author(s):  
Luís Roberto Marcondes Martins ◽  
Claudia Cia Worschech ◽  
José Augusto Rodrigues ◽  
Gláucia Maria Bovi Ambrosano

Abstract During tooth bleaching abrasive dentifrices might change the outer superficial enamel. The aim of this in vitro study was to evaluate the roughness of human enamel exposed to a 10% carbamide peroxide bleaching agent at different times and submitted to different superficial cleaning treatments. The study consisted of 60 sound human enamel slabs, randomly assigned to different treatment groups: G1 - not brushed; G2 - brushed with a fluoride abrasive dentifrice; G3 - brushed with a non-fluoride abrasive dentifrice; and G4 - brushed without a dentifrice. There were 15 enamel slabs per group. Slabs of molar teeth were obtained and sequentially polished with sandpaper and abrasive pastes. A perfilometer was used to obtain the mean of Ra value on the surface of each specimen to initial and experimental times. Bleaching was performed on the enamel surface for six hours daily. After that, each slab received a cleaning surface treatment and was stored in artificial saliva. Analysis of variance (ANOVA) and Tukey's HSD hoc analysis (α =0.05) revealed significant differences in roughness values over time for enamel bleached and treated with different superficial cleaning methods. G1 and G4 showed no significant differences in roughness over time, G2 and G3 showed a significant increase in the surface roughness values. This in vitro investigation showed the sole use of 10% carbamide peroxide did not alter the enamel surface roughness, but the cleaning treatments that employed the use of brushing with abrasive dentifrices resulted in a significant increase of enamel surface roughness. Citation Worschech CC, Rodrigues JA, Martins LRM, Ambrosano GMB. Brushing Effect of Abrasive Dentifrices during At-home Bleaching with 10% Carbamide Peroxide on Enamel Surface Roughness. J Contemp Dent Pract 2006 February;(7)1:025-034.


2016 ◽  
Vol 41 (1) ◽  
pp. E39-E47 ◽  
Author(s):  
B Cvikl ◽  
A Lussi ◽  
A Moritz ◽  
S Flury

SUMMARY Objective This study evaluated the differences in enamel color change, surface hardness, elastic modulus, and surface roughness between treatments with four bleaching gels containing carbamide peroxide (two at 10% and one each at 35%, and 45%) and two bleaching gels containing hydrogen peroxide (two at 40%). Methods Enamel specimens were bleached and color changes were measured. Color change was calculated using either ΔE or the Bleaching Index (BI). Then, surface hardness, elastic modulus, and surface roughness of the enamel specimens were evaluated. All measurements were performed at baseline and directly after the first bleaching treatment for all carbamide peroxide– and hydrogen peroxide–containing bleaching gels. In addition, final measurements were made 24 hours after each of a total of 10 bleaching treatments for carbamide peroxide bleaching gels, and 1 week after each of a total of three bleaching treatments for hydrogen peroxide bleaching gels. Results After the last bleaching treatment, respective ΔE scores were 17.6 and 8.2 for the two 10% carbamide peroxide gels, 12.9 and 5.6 for the 45% and 35% carbamide peroxide gels, and 9.6 and 13.9 for the two 40% hydrogen peroxide gels. The respective BI scores were −2.0 and −2.0 for the two 10% carbamide peroxide gels, −3.5 and −1.5 for the 45% and 35% carbamide peroxide gels, and −2.0 and −3.0 for the two 40% hydrogen peroxide gels. Each bleaching gel treatment resulted in significant whitening; however, no significant difference was found among the gels after the last bleaching. Whitening occurred within the first bleaching treatments and did not increase significantly during the remaining treatments. Surface hardness significantly decreased after the last bleaching treatment, when 10% carbamide peroxide was used. Furthermore, significant changes in the elastic modulus or surface roughness occurred only after treatment with 10% carbamide peroxide. Conclusion All six bleaching gels effectively bleached the enamel specimens independent of their concentration of peroxide. Gels with low peroxide concentration and longer contact time negatively affected the enamel surface.


2010 ◽  
Vol 80 (6) ◽  
pp. 1081-1088 ◽  
Author(s):  
Sevinc Karan ◽  
Beyza Hancioglu Kircelli ◽  
Bahar Tasdelen

Sign in / Sign up

Export Citation Format

Share Document