Role of HERV-W envelope protein ERVWE1 and receptors ASCT1 and ASCT2 in syncytial trophoblast fusion

2006 ◽  
Vol 195 (6) ◽  
pp. S159
Author(s):  
Brian Wagner ◽  
Jack Lenz
Virology ◽  
2010 ◽  
Vol 403 (1) ◽  
pp. 85-91 ◽  
Author(s):  
Shuliu Zhang ◽  
Evgeniy I. Bovshik ◽  
Rodrigo Maillard ◽  
Gregory D. Gromowski ◽  
David E. Volk ◽  
...  

2006 ◽  
Vol 118 (1-2) ◽  
pp. 55-61 ◽  
Author(s):  
Javier Robalino ◽  
Caroline Payne ◽  
Pamela Parnell ◽  
Eleanor Shepard ◽  
Adrian C. Grimes ◽  
...  

Author(s):  
Priyanka Verma ◽  
Santwana Bhatnagar ◽  
Pradeep Kumar ◽  
Vinita Chattree ◽  
M.M. Parida ◽  
...  

AbstractMany epidemic outbreaks of Chikungunya fever (CHIKF) have been reported throughout the world including India after its reemergence in 2005. The immuno protective role of envelope proteins during Chikungunya virus (CHIKV) infection has been reported. With the aim of identifying the immunodominant epitopes within the envelope protein we investigated the detailed analysis of fine specificity of antibody response in different individuals during CHIKV infection.The peptides corresponding to the full length of E1, E2 and E3 proteins of S27 strain of CHIKV were synthesized and their seroreactivity with CHIKV positive patients’ sera collected from different epidemic regions of India was determined using indirect ELISA.The data analysis reveals many potent epitopes throughout the length of envelope E2 protein thus displaying it as the most promising antigen for diagnostic purpose. We found that the main IgG isotype response to envelope protein was predominantly of subclass IgG3. Interestingly, most of the epitopes were found to be conserved for detecting IgM, IgG and IgG3 antibody response.Peptides E2P3, E2P7, E2P16 and E2P17 were revealed as the most immunodominant peptides that together can form the basis for designing an accurate, economical and easy to synthesize a peptide-based immunodiagnostic for CHIKV. This study provides new and important insight into the humoral response generated by CHIKV S27 strain during the early phase of infection.


2011 ◽  
Vol 1814 (12) ◽  
pp. 1796-1801 ◽  
Author(s):  
Kshatresh Dutta Dubey ◽  
Amit Kumar Chaubey ◽  
Rajendra Prasad Ojha

Author(s):  
Timothy M. Block ◽  
Xuanyong Lu ◽  
Anand Mehta ◽  
Jason Park ◽  
Baruch S. Blumberg ◽  
...  

2017 ◽  
Vol 118 (12) ◽  
pp. 4425-4435 ◽  
Author(s):  
Sandra Bermeo ◽  
Ahmed Al-Saedi ◽  
Moustapha Kassem ◽  
Christopher Vidal ◽  
Gustavo Duque

2004 ◽  
Vol 78 (2) ◽  
pp. 811-820 ◽  
Author(s):  
Séverine Bär ◽  
Marc Alizon

ABSTRACT The membrane fusion process mediated by the gp41 transmembrane envelope glycoprotein of the human immunodeficiency virus type 1 (HIV-1) was addressed by a flow cytometry assay detecting exchanges of fluorescent membrane probes (DiI and DiO) between cells expressing the HIV-1 envelope proteins (Env) and target cells. Double-fluorescent cells were detected when target cells expressed the type of chemokine receptor, CXCR4 or CCR5, matching the type of gp120 surface envelope protein, X4 or R5, respectively. Background levels of double-fluorescent cells were observed when the gp120-receptor interaction was blocked by AMD3100, a CXCR4 antagonist. The L568A mutation in the N-terminal heptad repeat (HR1) of gp41 resulted in parallel inhibition of the formation of syncytia and double-fluorescent cells, indicating that gp41 had a direct role in the exchange of fluorescent probes. In contrast, three mutations in the loop region of the gp41 ectodomain, located on either side of the Cys-(X)5-Cys motif (W596 M and W610A) or at the distal end of HR1 (D589L), had limited or no apparent effect on membrane lipid mixing between Env+ and target cells, while they blocked formation of syncytia and markedly reduced the exchanges of cytoplasmic fluorescent probes. The loop region could therefore have a direct or indirect role in events occurring after the merging of membranes, such as the formation or dilation of fusion pores. Two types of inhibitors of HIV-1 entry, the gp41-derived peptide T20 and the betulinic acid derivative RPR103611, had limited effects on membrane exchanges at concentrations blocking or markedly reducing syncytium formation. This finding confirmed that T20 can inhibit the late steps of membrane fusion (post-lipid mixing) and brought forth an indirect argument for the role of the gp41 loop region in these steps, as mutations conferring resistance to RPR103611V were mapped in this region (I595S or L602H).


Sign in / Sign up

Export Citation Format

Share Document