875: Diagnostic yield of genome-wide high resolution array-based comparative genomic hybridization (aCGH) for congenital heart defects

2019 ◽  
Vol 220 (1) ◽  
pp. S570
Author(s):  
Ahmed I. Ahmed ◽  
Ponnila S. Marinescu ◽  
Rami Ebrahim ◽  
Erica K. Nicasio ◽  
Monique Ho
Genes ◽  
2021 ◽  
Vol 12 (12) ◽  
pp. 2021
Author(s):  
Katarzyna Kowalczyk ◽  
Magdalena Bartnik-Głaska ◽  
Marta Smyk ◽  
Izabela Plaskota ◽  
Joanna Bernaciak ◽  
...  

Congenital heart defects (CHDs) appear in 8–10 out of 1000 live born newborns and are one of the most common causes of deaths. In fetuses, the congenital heart defects are found even 3–5 times more often. Currently, microarray comparative genomic hybridization (array CGH) is recommended by worldwide scientific organizations as a first-line test in the prenatal diagnosis of fetuses with sonographic abnormalities, especially cardiac defects. We present the results of the application of array CGH in 484 cases with prenatally diagnosed congenital heart diseases by fetal ultrasound scanning (256 isolated CHD and 228 CHD coexisting with other malformations). We identified pathogenic aberrations and likely pathogenic genetic loci for CHD in 165 fetuses and 9 copy number variants (CNVs) of unknown clinical significance. Prenatal array-CGH is a useful method allowing the identification of all unbalanced aberrations (number and structure) with a much higher resolution than the currently applied traditional assessment techniques karyotype. Due to this ability, we identified the etiology of heart defects in 37% of cases.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 759-759
Author(s):  
Frank G. Rucker ◽  
Lars Bullinger ◽  
Hans A. Kestler ◽  
Peter Lichter ◽  
Konstanze Dohner ◽  
...  

Abstract Clonal chromosome abnormalities represent one of the most important prognostic factors in adult acute myeloid leukemia (AML), and cytogenetic data are used for risk-adapted treatment strategies. By conventional cytogenetic analysis, approximately 50% of patients lack clonal chromosome aberrations, and normal cytogenetics are associated with an intermediate clinical outcome. This clinically heterogeneous group seems to be in part characterized by molecular markers, such as MLL, FLT3, CEBPA, and NPM1 mutations. In order to identify novel candidate regions of genomic imbalances, we applied comparative genomic hybridization to microarrays (matrix-CGH). Using this high-resolution genome-wide screening approach we analyzed 49 normal karyotype AML cases characterized for the most common clinically relevant molecular markers (MLL-PTD n=13, FLT3-ITD n=7, FLT3-ITD/NPM1+ n=4, MLL-PTD/FLT3-ITD n=3, CEBPA+ n=12, CEBPA+/FLT3-ITD n=1; CEBPA+/NPM1+ n=1; no molecular markers n=8) with a microarray platform consisting of 2799 different BAC or PAC clones. A set of 1500 of these clones covers the whole human genome with a physical distance of approximately 2 Mb. The remaining 1299 clones either contiguously span genomic regions known to be frequently involved in hematologic malignancies (e.g., 1p, 2p, 3q, 7q, 9p, 11q, 12q, 13q, 17p, 18q) (n=600) or contain oncogenes or tumor suppressor genes (n=699). In addition to known copy number polymorphisms in 5q11, 7q22, 7q35, 14q32, and 15q11, the CLuster Along Chromosomes method (CLAC; http://www-stat.stanford.edu/~wp57/CGH-Miner) disclosed copy number alterations (CNAs) in terms of gains in 1p, 11q, 12q, and 17p. CNAs in terms of losses were identified in 9p, 11q, 12p, 12q, and 13q. Two-class supervised analyses using the significance analysis of microarrays (SAM) method identified for the MLL-PTD cases a gain of a single clone harboring the MLL gene. While the significance of these findings, which are currently validated using fluorescence in-situ hybridization (FISH), still remains to be determined, our preliminary results already demonstrate the power and reliablity of this microarray-based technique allowing genome-wide screens of genomic imbalances as the MLL aberration was detected in all cases known to have a MLL-PTD. Furthermore, ongoing correlation of high-resolution genomic profiling with global gene expression studies will help to disclose pathways underlying normal karyotype AML, thereby leading to new insights of leukemogenesis.


2009 ◽  
Vol 40 (11) ◽  
pp. 1628-1637 ◽  
Author(s):  
Francesca Novara ◽  
Luca Arcaini ◽  
Michele Merli ◽  
Francesco Passamonti ◽  
Silvia Zibellini ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document