scholarly journals Preeclampsia: the role of persistent endothelial cells in uteroplacental arteries. Brosens I, Brosens JJ, Muter J, Puttemans P, Benagiano G. Am J Obstet Gynecol 2019;221:219-26.

2020 ◽  
Vol 222 (6) ◽  
pp. 633 ◽  
Author(s):  
Wilfried Gyselaers ◽  
Christoph Lees ◽  
Herbert Valensise ◽  
Basky Thilaganathan
1990 ◽  
Vol 64 (01) ◽  
pp. 099-103 ◽  
Author(s):  
Stephen M Prescott ◽  
Thomas M McIntyre ◽  
Guy A Zimmerman

1997 ◽  
Vol 77 (03) ◽  
pp. 577-584 ◽  
Author(s):  
Mehrdad Baghestanian ◽  
Roland Hofbauer ◽  
Hans G Kress ◽  
Johann Wojta ◽  
Astrid Fabry ◽  
...  

SummaryRecent data suggest that auricular thrombosis is associated with accumulation of mast cells (MC) in the upper endocardium (where usually no MC reside) and local expression of MGF (mast cell growth factor) (25). In this study, the role of vascular cells, thrombin-activation and MGF, in MC-migration was analyzed. For this purpose, cultured human auricular endocardial cells (HAUEC), umbilical vein endothelial cells (HUVEC) and uterine-(HUTMEC) and skin-derived (HSMEC) microvascular endothelial cells were exposed to thrombin or control medium, and the migration of primary tissue MC (lung, n = 6) and HMC-1 cells (human MC-line) against vascular cells (supernatants) measured. Supernatants (24 h) of unstimulated vascular cells (monolayers of endocardium or endothelium) as well as recombinant (rh) MGF induced a significant migratory response in HMC-1 (control: 3025 ± 344 cells [100 ± 11.4%] vs. MGF, 100 ng/ml: 8806 ± 1019 [291 ± 34%] vs. HAUEC: 9703 ± 1506 [320.8 ± 49.8%] vs. HUTMEC: 8950 ± 1857 [295.9 ± 61.4%] vs. HSMEC: 9965 ± 2018 [329.4 ± 66.7%] vs. HUVEC: 9487 ± 1402 [313.6 ± 46.4%], p <0.05) as well as in primary lung MC. Thrombin-activation (5 U/ml, 12 h) of vascular cells led to an augmentation of the directed migration of MC as well as to a hirudin-sensitive increase in MGF synthesis and release. Moreover, a blocking anti-MGF antibody was found to inhibit MC-migration induced by unstimulated or thrombin-activated vascular cells. Together, these data show that endocardial and other vascular cells can induce migration of human MC. This MC-chemotactic signal of the vasculature is associated with expression and release of MGF, augmentable by thrombin, and may play a role in the pathophysiology of (auricular) thrombosis.


2006 ◽  
Vol 1 (3) ◽  
pp. 333-343 ◽  
Author(s):  
Masashi Nomi ◽  
Hideaki Miyake ◽  
Yoshifumi Sugita ◽  
Masato Fujisawa ◽  
Shay Soker

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Maria I. Alvarez-Vergara ◽  
Alicia E. Rosales-Nieves ◽  
Rosana March-Diaz ◽  
Guiomar Rodriguez-Perinan ◽  
Nieves Lara-Ureña ◽  
...  

AbstractThe human Alzheimer’s disease (AD) brain accumulates angiogenic markers but paradoxically, the cerebral microvasculature is reduced around Aß plaques. Here we demonstrate that angiogenesis is started near Aß plaques in both AD mouse models and human AD samples. However, endothelial cells express the molecular signature of non-productive angiogenesis (NPA) and accumulate, around Aß plaques, a tip cell marker and IB4 reactive vascular anomalies with reduced NOTCH activity. Notably, NPA induction by endothelial loss of presenilin, whose mutations cause familial AD and which activity has been shown to decrease with age, produced a similar vascular phenotype in the absence of Aß pathology. We also show that Aß plaque-associated NPA locally disassembles blood vessels, leaving behind vascular scars, and that microglial phagocytosis contributes to the local loss of endothelial cells. These results define the role of NPA and microglia in local blood vessel disassembly and highlight the vascular component of presenilin loss of function in AD.


Author(s):  
Francesca Pagani ◽  
Elisa Tratta ◽  
Patrizia Dell’Era ◽  
Manuela Cominelli ◽  
Pietro Luigi Poliani

AbstractEarly B-cell factor-1 (EBF1) is a transcription factor with an important role in cell lineage specification and commitment during the early stage of cell maturation. Originally described during B-cell maturation, EBF1 was subsequently identified as a crucial molecule for proper cell fate commitment of mesenchymal stem cells into adipocytes, osteoblasts and muscle cells. In vessels, EBF1 expression and function have never been documented. Our data indicate that EBF1 is highly expressed in peri-endothelial cells in both tumor vessels and in physiological conditions. Immunohistochemistry, quantitative reverse transcription polymerase chain reaction (RT-qPCR) and fluorescence-activated cell sorting (FACS) analysis suggest that EBF1-expressing peri-endothelial cells represent bona fide pericytes and selectively express well-recognized markers employed in the identification of the pericyte phenotype (SMA, PDGFRβ, CD146, NG2). This observation was also confirmed in vitro in human placenta-derived pericytes and in human brain vascular pericytes (HBVP). Of note, in accord with the key role of EBF1 in the cell lineage commitment of mesenchymal stem cells, EBF1-silenced HBVP cells showed a significant reduction in PDGFRβ and CD146, but not CD90, a marker mostly associated with a prominent mesenchymal phenotype. Moreover, the expression levels of VEGF, angiopoietin-1, NG2 and TGF-β, cytokines produced by pericytes during angiogenesis and linked to their differentiation and activation, were also significantly reduced. Overall, the data suggest a functional role of EBF1 in the cell fate commitment toward the pericyte phenotype.


Sign in / Sign up

Export Citation Format

Share Document