Genetic deletion of Vegfr2 in endothelial cells leads to immediate disruption of tumor vessels and aggravation of hypoxia

Author(s):  
Yasuaki Kido ◽  
Tomofumi Ando ◽  
Takahito Iga ◽  
Masatsugu Ema ◽  
Yoshiaki Kubota ◽  
...  
Circulation ◽  
2014 ◽  
Vol 130 (suppl_2) ◽  
Author(s):  
Sachiko Nishimoto ◽  
Daiju Fukuda ◽  
Yasutomi Higashikuni ◽  
Kimie Tanaka ◽  
Yoichiro Hirata ◽  
...  

Background: Peripheral artery disease causes significant functional disability and results in impaired quality of life. Toll-like receptor (TLR)-2, 3 and 4 are suggested to participate in blood flow recovery in ischemic limb by modulating inflammation and angiogenesis, however, the role of TLR9 remains unknown. TLR9 recognizes bacterial unmethylated DNA and plays a role in innate defense, although it can also provoke inflammation in response to fragmented DNA released from regenerated mammalian cells. This study tested the hypothesis that genetic deletion of TLR9 accelerates blood flow recovery after femoral artery ligation by inhibiting inflammation and improving endothelial cell function. Methods and Results: Unilateral femoral artery ligation was performed in TLR9-deficient (TLR9KO) mice and wild type (WT) mice. Femoral artery ligation significantly increased RNA expression of TLR9 (20-times) in WT mice and plasma levels of single-stranded DNA and double-stranded DNA, endogenous ligands for TLR9, in both strains of mice compared with each sham-operated group (P<0.05). Laser Doppler perfusion imaging demonstrated that TLR9KO mice significantly improved the ratio of the blood flow in the ischemic to non-ischemic limb compared with WT mice at 2 weeks after ligation (P<0.05). TLR9KO mice showed less accumulation of macrophages and less expression of inflammatory molecules (e.g., TNF-α, MCP-1 and IL-1β in ischemic muscle compared with WT mice (P<0.05, respectively). In vitro experiments using thioglycolate-stimulated peritoneal macrophages demonstrated that CpG ODN, agonistic oligonucleotide for TLR9, promoted the expression of pro-inflammatory molecules (e.g., MCP-1 and TNF-α) in WT macrophages (P<0.05, respectively) but not in TLR9 KO macrophages. Furthermore, activation of TLR9 by CpG ODN inhibited migration and proliferation of endothelial cells as determined by scratch-wound assay and MTS assay, respectively (P<0.05). Conclusion: Our results suggested that TLR9 enhances inflammation and affects migration and proliferation of endothelial cells, leading to impaired blood flow recovery in ischemic limb. TLR9 may serve as a potential therapeutic target for ischemic limb disease.


2020 ◽  
Vol 9 (19) ◽  
Author(s):  
Huijing Xia ◽  
Zhen Li ◽  
Thomas E. Sharp ◽  
David J. Polhemus ◽  
Jean Carnal ◽  
...  

Background Hydrogen sulfide (H 2 S) is an important endogenous physiological signaling molecule and exerts protective properties in the cardiovascular system. Cystathionine γ‐lyase (CSE), 1 of 3 H 2 S producing enzyme, is predominantly localized in the vascular endothelium. However, the regulation of CSE in vascular endothelium remains incompletely understood. Methods and Results We generated inducible endothelial cell‐specific CSE overexpressed transgenic mice (EC‐CSE Tg) and endothelial cell‐specific CSE knockout mice (EC‐CSE KO), and investigated vascular function in isolated thoracic aorta, treadmill exercise capacity, and myocardial injury following ischemia‐reperfusion in these mice. Overexpression of CSE in endothelial cells resulted in increased circulating and myocardial H 2 S and NO, augmented endothelial‐dependent vasorelaxation response in thoracic aorta, improved exercise capacity, and reduced myocardial‐reperfusion injury. In contrast, genetic deletion of CSE in endothelial cells led to decreased circulating H 2 S and cardiac NO production, impaired endothelial dependent vasorelaxation response and reduced exercise capacity. However, myocardial‐reperfusion injury was not affected by genetic deletion of endothelial cell CSE. Conclusions CSE‐derived H 2 S production in endothelial cells is critical in maintaining endothelial function, exercise capacity, and protecting against myocardial ischemia/reperfusion injury. Our data suggest that the endothelial NO synthase—NO pathway is likely involved in the beneficial effects of overexpression of CSE in the endothelium.


2008 ◽  
Vol 6 (6) ◽  
pp. 929-936 ◽  
Author(s):  
Krishna Reddy ◽  
Zhichao Zhou ◽  
Keri Schadler ◽  
Shu-Fang Jia ◽  
Eugenie S. Kleinerman

Blood ◽  
2008 ◽  
Vol 111 (4) ◽  
pp. 2015-2023 ◽  
Author(s):  
Anna Dimberg ◽  
Svetlana Rylova ◽  
Lothar C. Dieterich ◽  
Anna-Karin Olsson ◽  
Petter Schiller ◽  
...  

Selective targeting of endothelial cells in tumor vessels requires delineation of key molecular events in formation and survival of blood vessels within the tumor microenvironment. To this end, proteins transiently up-regulated during vessel morphogenesis were screened for their potential as targets in antiangiogenic tumor therapy. The molecular chaperone αB-crystallin was identified as specifically induced with regard to expression level, modification by serine phosphorylation, and subcellular localization during tubular morphogenesis of endothelial cells. Small interfering RNA–mediated knockdown of αB-crystallin expression did not affect endothelial proliferation but led to attenuated tubular morphogenesis, early activation of proapoptotic caspase-3, and increased apoptosis. αB-crystallin was expressed in a subset of human tumor vessels but not in normal capillaries. Tumors grown in αB-crystallin−/− mice were significantly less vascularized than wild-type tumors and displayed increased areas of apoptosis/necrosis. Importantly, tumor vessels in αB-crystallin−/− mice were leaky and showed signs of caspase-3 activation and extensive apoptosis. Ultrastructural analyses showed defective vessels partially devoid of endothelial lining. These data strongly implicate αB-crystallin as an important regulator of tubular morphogenesis and survival of endothelial cell during tumor angiogenesis. Hereby we identify the small heat shock protein family as a novel class of angiogenic modulators.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 3950-3950
Author(s):  
Anna M. Dyszkiewicz-Korpanty ◽  
Ravindra Sarode ◽  
Philip E. Thorpe ◽  
Eugene P. Frenkel

Abstract Tarvacin™ is a chimeric anti-PS antibody that is currently in Phase I clinical trials in cancer patients. It acts by targeting PS that becomes exposed on vascular endothelium in tumors in response to oxidative stress in the tumor microenvironment. Tarvacin™ recognizes a complex of PS and the PS-binding protein, β2 glycoprotein I. Host leukocytes are induced to bind to the complex in tumor vessels and destroy tumor vessels by antibody-dependent cellular cytotoxity. However, antibodies directed against PS-associated proteins are also known to elicit anti-phospholipid syndromes (APS). Anti-PS antibodies possibly cause APS by displacing anticoagulant proteins from PS on activated cell or by enhancing the binding of prothrombin; another explanation might be a direct activation of endothelial cells and platelets. The aim of the study was to determine whether Tarvacin ™ induces or interferes with platelet activation caused by ADP, collagen type I or calcimycin in vitro. Blood was drawn from 3 healthy volunteers, aged 31–54, who have not taken any antiplatelet medication for 14 days prior to the study. Dual channel whole blood aggregometer (Chronolog, Havertown, PA, USA) was employed for platelet aggregation studies in whole blood (WB/impedance method) and platelet rich plasma (PRP/optical method). Platelet count in PRP was adjusted to 200 K/μL. Platelet agonists (PS exposure triggers) used in the experiments were as follows: collagen (0.5, 1, 2 μg/mL), ADP (1.25, 2.5, 5, 10 μM), Calcimycin (10, 20, 30 μM) and Calcium ions (1, 2 mmol/L). Tarvacin™ was provided by Peregrine Pharmaceuticals Inc, Tustin, CA. The Anti-CD 20 antibody, Rituxan ™ and physiologic saline were used as controls. Specimens (WB diluted with saline in 1:1 ratio or PRP) with the addition of Tarvacin™ (100 μg/mL) or Rituxan ™ (100 μg/mL) or saline were first incubated on a gentle mixer for 10 minutes; incubation was then continued at 37 ° in the aggregometer well for another 5 minutes. Agonist-induced platelet aggregation was subsequently examined. Platelet aggregation studies in both WB and PRP showed that Tarvacin™ neither induced platelet activation, nor inhibited platelet activation in response to ADP, collagen or calcimycin in vitro. In conclusion, Tarvacin™ does not affect platelet function in the present in vitro assays. Possibly, the epitope on the PS -β2 glycoprotein I complex does not orientate the antibody in a manner that interferes with platelet activation. Alternatively, activated endothelial cells or other factors may be critical to support platelet activation.


2017 ◽  
Vol 214 (8) ◽  
pp. 2437-2452 ◽  
Author(s):  
Oliver Lyons ◽  
Prakash Saha ◽  
Christopher Seet ◽  
Adam Kuchta ◽  
Andrew Arnold ◽  
...  

Venous valves (VVs) prevent venous hypertension and ulceration. We report that FOXC2 and GJC2 mutations are associated with reduced VV number and length. In mice, early VV formation is marked by elongation and reorientation (“organization”) of Prox1hi endothelial cells by postnatal day 0. The expression of the transcription factors Foxc2 and Nfatc1 and the gap junction proteins Gjc2, Gja1, and Gja4 were temporospatially regulated during this process. Foxc2 and Nfatc1 were coexpressed at P0, and combined Foxc2 deletion with calcineurin-Nfat inhibition disrupted early Prox1hi endothelial organization, suggesting cooperative Foxc2–Nfatc1 patterning of these events. Genetic deletion of Gjc2, Gja4, or Gja1 also disrupted early VV Prox1hi endothelial organization at postnatal day 0, and this likely underlies the VV defects seen in patients with GJC2 mutations. Knockout of Gja4 or Gjc2 resulted in reduced proliferation of Prox1hi valve-forming cells. At later stages of blood flow, Foxc2 and calcineurin-Nfat signaling are each required for growth of the valve leaflets, whereas Foxc2 is not required for VV maintenance.


2002 ◽  
Vol 103 (5) ◽  
pp. 577-586 ◽  
Author(s):  
Michael C. Schmid ◽  
Marco Bisoffi ◽  
Antoinette Wetterwald ◽  
Elsbeth Gautschi ◽  
George N. Thalmann ◽  
...  

2017 ◽  
Author(s):  
Zheng Fan ◽  
Thomas Broggini ◽  
Eduard Yakubov ◽  
Tina Sehm ◽  
Sebastian Schürmann ◽  
...  

ABSTRACTBrain tumors are among the most malignant primary tumors, hallmarked by angiogenesis, neuronal destruction and brain swelling. Inhibition of the glutamate-cystein antiporter xCT (system xc−/SLC7A11) alleviates seizures, neuronal cell death and tumor-associated brain edema. Here we show enhanced tumor vessel growth and increased brain edema in xCT-expressing brain tumors. Furthermore, xCT-mediated glutamate impacts directly on endothelial cells in an N-methyl-D-aspartate receptor (NMDAR) dependent manner with intracellular Ca2+ release. Cerebral intravital microscopy revealed that xCT-driven tumor vessels are functional and display increased permeability. Endothelial-cell-specific NMDAR1 knockout mice (GRINiΔEC) show suppressed endothelial sprouting and vascular density compared to control littermates. In addition, implanted gliomas in GRINiΔEC mice display reduced tumor vessels in contrast to gliomas in wildtype animals. Moreover, therapeutic targeting of xCT in gliomas alleviates tumor angiogenesis to normalized levels comparable to controls. Our data reveal that xCT and its substrate glutamate specifically operate on endothelial cells and promote neoangiogenesis. Thus, targeting xCT expression and glutamate secretion in gliomas provides a novel therapeutic roadmap for normalizing tumor angiogenesis.


Sign in / Sign up

Export Citation Format

Share Document