Osmotic shock pre-treatment of Chaetoceros muelleri wet biomass enhanced solvent-free lipid extraction and biogas production

2021 ◽  
Vol 54 ◽  
pp. 102177
Author(s):  
Lina María González-González ◽  
Sergi Astals ◽  
Steven Pratt ◽  
Paul D. Jensen ◽  
Peer M. Schenk
2017 ◽  
Vol 60 (2) ◽  
pp. 101-108 ◽  
Author(s):  
Soojung Park ◽  
Kyochan Kim ◽  
Sang-Il Han ◽  
Eun Jung Kim ◽  
Yoon-E Choi

2019 ◽  
Vol 7 ◽  
pp. 100214 ◽  
Author(s):  
Lina María González-González ◽  
Sergi Astals ◽  
Steven Pratt ◽  
Paul D. Jensen ◽  
Peer M. Schenk

2021 ◽  
pp. 100716
Author(s):  
Deisi Cristina Tápparo ◽  
Daniela Cândido ◽  
Ricardo Luis Radis Steinmetz ◽  
Christian Etzkorn ◽  
André Cestonaro do Amaral ◽  
...  

2013 ◽  
Vol 67 (9) ◽  
Author(s):  
Karina Michalska ◽  
Stanisław Ledakowicz

AbstractThis work studies the influence of the alkali pre-treatment of Sorghum Moench — a representative of energy crops used in biogas production. Solutions containing various concentrations of sodium hydroxide were used to achieve the highest degradation of lignocellulosic structures. The results obtained after chemical pre-treatment indicate that the use of NaOH leads to the removal of almost all lignin (over 99 % in the case of 5 mass % NaOH) from the biomass, which is a prerequisite for efficient anaerobic digestion. Several parameters, such as chemical oxygen demand, total organic carbon, total phenolic content, volatile fatty acids, and general nitrogen were determined in the hydrolysates thus obtained in order to define the most favourable conditions. The best results were obtained for the Sorghum treated with 5 mass % NaOH at 121°C for 30 min The hydrolysate thus achieved consisted of high total phenolic compounds concentration (ca. 4.7 g L−1) and chemical oxygen demand value (ca. 45 g L−1). Although single alkali hydrolysis causes total degradation of glucose, a combined chemical and enzymatic pre-treatment of Sorghum leads to the release of large amounts of this monosaccharide into the supernatant. This indicates that alkali pre-treatment does not lead to complete cellulose destruction. The high degradation of lignin structure in the first step of the pre-treatment rendered the remainder of the biomass available for enzymatic action. A comparison of the efficiency of biogas production from untreated Sorghum and Sorghum treated with the use of NaOH and enzymes shows that chemical hydrolysis improves the anaerobic digestion effectiveness and the combined pre-treatment could have great potential for methane generation.


2014 ◽  
Vol 28 (3) ◽  
pp. 341-348 ◽  
Author(s):  
Agata Piasecka ◽  
Izabela Krzemińska ◽  
Jerzy Tys

Abstract The prospect of depletion of natural energy resources on the Earth forces researchers to seek and explore new and alternative energy sources. Biomass is a composite resource that can be used in many ways leading to diversity of products. Therefore, microalgal biomass offers great potential. The main aim of this study is to find the best physical method of microalgal biomass pretreatment that guarantees efficient lipid extraction. These studies identifies biochemical composition of microalgal biomass as source for biodisel production. The influence of drying at different temperatures and lyophilization was investigated. In addition, wet and untreated biomass was examined. Cell disruption (sonication and microwave) techniques were used to improve lipid extraction from wet biomass. Additionally, two different extraction methods were carried out to select the best method of crude oil extraction. The results of this study show that wet biomass after sonication is the most suitable for extraction. The fatty acid composition of microalgal biomass includes linoleic acid (C18:2), palmitic acid (C16:0), oleic acid (C18:1), linolenic acid (C18:3), and stearic acid (C18:0), which play a key role in biodiesel production.


2021 ◽  
Vol 25 (11) ◽  
pp. 1-10
Author(s):  
K. Vasumathi ◽  
Raja Vadivu G. Nadana ◽  
E.M. Nithiya ◽  
K. Sundar ◽  
M. Premalatha

Microalgae, the photosynthetic microorganism growing abundantly in marine and aquatic ecosystems, are potential source for biological sequestration of CO2. The carbon uptake differs in the presence of other nutrients, light intensity etc. The biomass yield of Scenedesmus arcuatus var capitatus was studied based on the Face Centred Central Composite design (FCCD) of Response Surface Methodology (RSM) for nitrate, phosphate and carbonate under different conditions (laboratory, room and sunlight conditions). Various pre-treatments (osmotic shock, autoclaving, microwave and ultrasonication) were employed to find the best method for maximum lipid yield. The biomass yield reached a maximum of 1 g/L under sunlight conditions of nitrate concentration 500 ppm and carbonate 2000 ppm. The laboratory conditions resulted in a biomass yield of 0.59 g/L at 500 ppm nitrate, 1000 ppm carbonate and 250 ppm phosphate. Under room conditions, the yield was very low (0.11 g/L). Osmotic shock resulted in higher lipid yield than the other pre-treatment methods. The ability of Scenedesmus arcuatus to uptake high carbon under sunlight conditions and to adapt to high light intensity and fluctuations in light intensity concludes that this species is suitable for large-scale open pond cultivation for CO2 sequestration and production of metabolites.


Processes ◽  
2020 ◽  
Vol 8 (12) ◽  
pp. 1586
Author(s):  
Ana Sánchez-Zurano ◽  
Ainoa Morillas-España ◽  
Cynthia Victoria González-López ◽  
Tomás Lafarga

A response surface methodology was used to optimise the solubilisation and precipitation of proteins from the cyanobacterium Arthrospira platensis. Two separate experiments were designed and conducted in a sequential manner. Protein solubilisation was affected by pH, extraction time, and biomass to solvent ratio (p < 0.001). Although spray-drying and the osmotic shock suffered when resuspending the dried biomass into distilled water led to a certain degree of cell wall disruption, the amount of protein that could be solubilised without an additional disruption step was in the range 30–60%. Sequential extractions improved protein solubilisation by less than 5%. For this reason, a pre-treatment based on sonication (400 W, 24 kHz, 2 min) had to be used, allowing the solubilisation of 96.2% of total proteins. Protein precipitation was affected by both pH and extraction time (p < 0.001). The optimised precipitation conditions, which were pH 3.89 over 45 min, led to a protein recovery of 75.2%. The protein content of the extract was close to 80%, which could be further increased by using different purification steps. The proteins extracted could be used in the food industry as technofunctional ingredients or as a source of bioactive hydrolysates and peptides for functional foods and nutraceuticals.


2013 ◽  
pp. 85-103 ◽  
Author(s):  
Günther Bochmann ◽  
Lucy F.R. Montgomery

Sign in / Sign up

Export Citation Format

Share Document