Peristaltic motion of a Carreau fluid in an asymmetric channel

2007 ◽  
Vol 193 (2) ◽  
pp. 535-552 ◽  
Author(s):  
Nasir Ali ◽  
Tasawar Hayat
2010 ◽  
Vol 65 (12) ◽  
pp. 1121-1127 ◽  
Author(s):  
Tasawar Hayat ◽  
Najma Saleem ◽  
Awatif A. Hendi

An analysis has been carried out for peristaltic flow and heat transfer of a Carreau fluid in an asymmetric channel with slip effect. The governing problem is solved under long wavelength approximation. The variations of pertinent dimensionless parameters on temperature are discussed. Pumping and trapping phenomena are studied.


2008 ◽  
Vol 387 (2-3) ◽  
pp. 347-362 ◽  
Author(s):  
Yongqi Wang ◽  
Tasawar Hayat ◽  
Nasir Ali ◽  
Martin Oberlack

2015 ◽  
Vol 08 (04) ◽  
pp. 1550054 ◽  
Author(s):  
M. Kothandapani ◽  
J. Prakash ◽  
S. Srinivas

The effect of permeable walls and magnetic field on the peristaltic flow of a Carreau fluid in a tapered asymmetric channel is studied. The tapered asymmetric channel is normally created due to the intra-uterine fluid flow induced by myometrial contractions and it was simulated by asymmetric peristaltic fluid flow in a two-dimensional infinite non-uniform channel. The analysis has been performed under long wavelength and low-Reynolds number assumptions to linearize the governing flow equations. A series solution in respect of a small Weissenberg number is obtained for the stream function, axial pressure gradient and shear stress. Time average of pressure rise and frictional force on the upper wall has also been computed using numerical integration. The results have been presented graphically for the various interested physical parameters. It is observed that for Carreau fluids the peristalsis works as a pump against a greater pressure rise compared with a Newtonian fluid, while there exists no significant difference in free pumping flux for Newtonian and Carreau fluids in the tapered asymmetric channel.


2009 ◽  
Vol 87 (8) ◽  
pp. 957-965 ◽  
Author(s):  
Ayman Mahmoud Sobh

In this paper, peristaltic transport of a Carreau fluid in an asymmetric channel is studied theoretically under zero Reynolds number and long-wavelength approximation for both slip and no-slip flow (Kn  =  0). The problem is analyzed using a perturbation expansion in terms of the Weissenberg number as a parameter. Analytic forms for the axial velocity component and the pressure gradient are obtained to second order. The pressure rise is computed numerically and explained graphically. Moreover, the effects of the slip parameter, Weissenberg number, power-law index, and phase difference on the pressure gradient, the axial velocity, and the trapping phenomena have been discussed.


2019 ◽  
Vol 29 (3) ◽  
pp. 94
Author(s):  
Tamara Sh. Ahmed

During this article, we have a tendency to show the peristaltic activity of magnetohydrodynamics flow of carreau fluid with heat transfer influence in an inclined tapered asymmetric channel through porous medium by exploitation the influence of non-slip boundary conditions. The tapered asymmetric channel is often created because of the intrauterine fluid flow induced by myometrial contraction and it had been simulated by asymmetric peristaltic fluid flow in an exceedingly two dimensional infinite non uniform channel, this fluid is known as hereby carreau fluid, conjointly we are able to say that one amongst carreau's applications is that the blood flow within the body of human. Industrial field, silicon oil is an example of carreau fluid. By exploitation, the perturbation technique for little values of weissenberg number, the nonlinear governing equations in the two-dimensional Cartesian coordinate system is resolved under the assumptions of long wavelength and low Reynolds number. The expressions of stream function, temperature distribution, the coefficient of heat transfer, frictional forces at the walls of the channel, pressure gradient are calculated. The effectiveness of interesting parameters on the inflow has been colluded and studied.


Sign in / Sign up

Export Citation Format

Share Document