Peristaltic transport of a MHD Carreau fluid in a tapered asymmetric channel with permeable walls

2015 ◽  
Vol 08 (04) ◽  
pp. 1550054 ◽  
Author(s):  
M. Kothandapani ◽  
J. Prakash ◽  
S. Srinivas

The effect of permeable walls and magnetic field on the peristaltic flow of a Carreau fluid in a tapered asymmetric channel is studied. The tapered asymmetric channel is normally created due to the intra-uterine fluid flow induced by myometrial contractions and it was simulated by asymmetric peristaltic fluid flow in a two-dimensional infinite non-uniform channel. The analysis has been performed under long wavelength and low-Reynolds number assumptions to linearize the governing flow equations. A series solution in respect of a small Weissenberg number is obtained for the stream function, axial pressure gradient and shear stress. Time average of pressure rise and frictional force on the upper wall has also been computed using numerical integration. The results have been presented graphically for the various interested physical parameters. It is observed that for Carreau fluids the peristalsis works as a pump against a greater pressure rise compared with a Newtonian fluid, while there exists no significant difference in free pumping flux for Newtonian and Carreau fluids in the tapered asymmetric channel.

2009 ◽  
Vol 87 (8) ◽  
pp. 957-965 ◽  
Author(s):  
Ayman Mahmoud Sobh

In this paper, peristaltic transport of a Carreau fluid in an asymmetric channel is studied theoretically under zero Reynolds number and long-wavelength approximation for both slip and no-slip flow (Kn  =  0). The problem is analyzed using a perturbation expansion in terms of the Weissenberg number as a parameter. Analytic forms for the axial velocity component and the pressure gradient are obtained to second order. The pressure rise is computed numerically and explained graphically. Moreover, the effects of the slip parameter, Weissenberg number, power-law index, and phase difference on the pressure gradient, the axial velocity, and the trapping phenomena have been discussed.


2019 ◽  
Vol 29 (3) ◽  
pp. 94
Author(s):  
Tamara Sh. Ahmed

During this article, we have a tendency to show the peristaltic activity of magnetohydrodynamics flow of carreau fluid with heat transfer influence in an inclined tapered asymmetric channel through porous medium by exploitation the influence of non-slip boundary conditions. The tapered asymmetric channel is often created because of the intrauterine fluid flow induced by myometrial contraction and it had been simulated by asymmetric peristaltic fluid flow in an exceedingly two dimensional infinite non uniform channel, this fluid is known as hereby carreau fluid, conjointly we are able to say that one amongst carreau's applications is that the blood flow within the body of human. Industrial field, silicon oil is an example of carreau fluid. By exploitation, the perturbation technique for little values of weissenberg number, the nonlinear governing equations in the two-dimensional Cartesian coordinate system is resolved under the assumptions of long wavelength and low Reynolds number. The expressions of stream function, temperature distribution, the coefficient of heat transfer, frictional forces at the walls of the channel, pressure gradient are calculated. The effectiveness of interesting parameters on the inflow has been colluded and studied.


2009 ◽  
Vol 64 (9-10) ◽  
pp. 559-567 ◽  
Author(s):  
Sohail Nadeem ◽  
Safia Akram

In the present analysis, we have modeled the governing equations of a two dimensional hyperbolic tangent fluid model. Using the assumption of long wavelength and low Reynolds number, the governing equations of hyperbolic tangent fluid for an asymmetric channel have been solved using the regular perturbation method. The expression for pressure rise has been calculated using numerical integrations. At the end, various physical parameters have been shown pictorially. It is found that the narrow part of the channel requires a large pressure gradient, also in the narrow part the pressure gradient decreases with the increase in Weissenberg number We and channel width d.


2014 ◽  
Vol 11 (3) ◽  
pp. 157-168 ◽  
Author(s):  
T. Hayat ◽  
Humaira Yasmin ◽  
A. Alsaedi

We investigate the peristaltic motion of Carreau fluid in an asymmetric channel with convective boundary conditions. Mathematical formulation is first reduced in a wave frame of reference and then solutions are constructed by long wavelength and low Reynolds number conventions. Results of the stream function, axial pressure gradient, temperature and pressure rise over a wavelength are obtained for small Weissenberg number. Velocity and temperature distributions are analyzed for different parameters of interest. A comparative study between the results of Newtonian and Carreau fluids is given.


Author(s):  
Elsayed F. Elshehawey ◽  
Ayman M. F. Sobh

Peristaltic motion of viscoelastic incompressible fluid in an axisymmetric tube with a sinusoidal wave is studied theoretically in the case that the radius of the tube is small relative to the wavelength. Oldroyd flow has been considered in this study and the problem is formulated and analyzed using a perturbation expansion in terms of the variation of the wave number. This analysis can model the chyme movement in the small intestine by considering the chyme as an Oldroyd fluid. We found out that the pumping rate of Oldroyd fluid is less than that for a Newtonian fluid. Further, the effects of Reynolds number, Weissenberg number, amplitude ratio and wave number on the pressure rise and friction force have been discussed. It is found that the pressure rise does not depend on Weissenberg number at a certain value of flow rate. The results are studied for various values of the physical parameters of interest.


Author(s):  
Akito Ikegami ◽  
Takahiro Tsukahara ◽  
Yasuo Kawaguchi

We studied viscoelastic turbulent flow over a backward-facing step of the expansion ratio ER = 1.5 using DNS (direct numerical simulation) at a friction Reynolds number Reτ0 of 100. We chose the Giesekus model as a viscoelastic constitutive equation, and the Weissenberg number is Wiτ0 = 10 and 20. Visualized instantaneous vortices revealing that a few vortices occur only above the recirculation regions in the viscoelastic fluid flow compared to those in the Newtonian flow. This phenomenon might be caused by the fluid viscoelasticity that would suppress the Kelvin-Helmholz vortex emanating from the step edge. The reattachment length from the step is 6.80h for the Newtonian fluid, 7.82h for Wiτ0 = 10, and 8.82h for Wiτ0 = 20, where h is the step height. In the mean velocity distributions normalized by maximum inlet velocity, we have observed no significant difference among the three fluids, except for region near the upper or bottom wall, i.e., the recirculation and recovery regions at the front and behind the reattachment point. The streamwise turbulent intensity u’rms is weaken in the recirculation region of the viscoelastic flows. In terms of v’rms, its magnitude in the recirculation region becomes largest in the case of Wiτ0 = 10, not for the Newtonian fluid flow or more viscoelastic case of Wiτ0 = 20.


2010 ◽  
Vol 65 (6-7) ◽  
pp. 483-494 ◽  
Author(s):  
Sohail Nadeem ◽  
Safia Akram

In the present paper, we have studied the influence of heat transfer and magnetic field on a peristaltic transport of a Jeffrey fluid in an asymmetric channel with partial slip. The complicated Jeffrey fluid equations are simplified using the long wave length and low Reynolds number assumptions. In the wave frame of reference, an exact and closed form of Adomian solution is presented. The expressions for pressure drop, pressure rise, stream function, and temperature field have been calculated. The behaviour of different physical parameters has been discussed graphically. The pumping and trapping phenomena of various wave forms (sinusoidal, multisinusoidal, square, triangular, and trapezoidal) are also studied.


2014 ◽  
Vol 07 (06) ◽  
pp. 1450064 ◽  
Author(s):  
K. Vajravelu ◽  
S. Sreenadh ◽  
G. Sucharitha ◽  
P. Lakshminarayana

Peristaltic flow of a conducting Jeffrey fluid in an inclined asymmetric channel is investigated. The channel asymmetry is produced by considering a peristaltic wave train on the flexible walls of the channel with different amplitudes and phases. The nonlinear governing equations are solved analytically by a perturbation technique. The expressions for the stream function, axial velocity and the pressure rise per wavelength are determined in terms of the Jeffrey number λ1, the Froude number Fr, the perturbation parameter δ, the angle of inclination θ and the phase difference ϕ. Effects of the physical parameters on the velocity field and the pumping characteristics are discussed. It is observed that the size of the trapping bolus increase with an increase in the magnetic parameter and the volume flow rate. That is, the magnetic parameter and the volume flow rate have strong influence on the trapping bolus phenomenon.


Crystals ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 27
Author(s):  
Azad Hussain ◽  
Aysha Rehman ◽  
Naqash Ahmed ◽  
A. S. El-Shafay ◽  
Sahar A. Najati ◽  
...  

The present article investigates heat transfer and pseudoplastic nanomaterial liquid flow over a vertical thin cylinder. The Buongiorno model is used for this analysis. The problem gains more significance when temperature-dependent variable viscosity is taken into account. Using suitable similarity variables, nonlinear flow equations are first converted into ordinary differential equations. The generating structure is solved by the MATLAB BVP4C algorithm. Newly developed physical parameters are focused. It is observed that the heat transfer rate and the skin friction coefficient is increased remarkably because of mixing nano-particles in the base fluid by considering γb=1, 2, 3, 4 and λ=1, 1.5, 2, 2.5,3. It is found that the temperature field increases by inclining the values of thermophoresis and Brownian motion parameters. It is also evaluated that the velocity field decreases by increasing the values of the curvature parameter, Weissenberg number and buoyancy ratio characteristics.


2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Aysha Rehman ◽  
Azad Hussain ◽  
Sohail Nadeem

Nanofluids are used as coolants in heat transport devices like heat exchangers, radiators, and electronic cooling systems (like a flat plate) because of their improved thermal properties. The preeminent perspective of this study is to highlight the influence of combined convection on heat transfer and pseudoplastic non-Newtonian nanofluid flow towards an extendable Riga surface. Buongiorno model is incorporated in the present study to tackle a diverse range of Reynolds numbers and to analyze the behavior of the pseudoplastic nanofluid flow. Nanofluid features are scrutinized through Brownian motion and thermophoresis diffusion. By the use of the boundary layer principle, the compact form of flow equations is transformed into component forms. The modeled system is numerically simulated. The effects of various physical parameters on skin friction, mass transfer, and thermal energy are numerically computed. Fluctuations of velocity increased when modified Hartmann number and mixed convection parameter are boosted, where it collapses for Weissenberg number and width parameter. It can be revealed that the temperature curve gets down if modified Hartmann number, mixed convection, and buoyancy ratio parameters upgrade. Concentration patterns diminish when there is an incline in width parameter and Lewis number; on the other hand, it went upward for Brownian motion parameter, modified Hartmann, and Prandtl number.


Sign in / Sign up

Export Citation Format

Share Document