scholarly journals Interaction between fish oil and plant oils or starchy concentrates in the diet: Effects on dairy performance and milk fatty acid composition in goats

2014 ◽  
Vol 198 ◽  
pp. 67-82 ◽  
Author(s):  
P.G. Toral ◽  
J. Rouel ◽  
L. Bernard ◽  
Y. Chilliard
2005 ◽  
Vol 80 (2) ◽  
pp. 225-238 ◽  
Author(s):  
K. J. Shingfield ◽  
C. K. Reynolds ◽  
B. Lupoli ◽  
V. Toivonen ◽  
M. P. Yurawecz ◽  
...  

AbstractBased on the potential benefits ofcis-9,trans-11 conjugated linoleic acid (CLA) for human health there is a need to develop effective strategies for enhancing milk fat CLA concentrations. In this experiment, the effect of forage type and level of concentrate in the diet on milk fatty acid composition was examined in cows given a mixture of fish oil and sunflower oil. Four late lactation Holstein-British Friesian cows were used in a 4 × 4 Latin-square experiment with a 2 × 2 factorial arrangement of treatments and 21-day experimental periods. Treatments consisted of grass (G) or maize (M) silage supplemented with low (L) or high (H) levels of concentrates (65 : 35 and 35 : 65; forage : concentrate ratio, on a dry matter (DM) basis, respectively) offered as a total mixed ration at a restricted level of intake (20 kg DM per day). Lipid supplements (30 g/kg DM) containing fish oil and sunflower oil (2 : 3 w/w) were offered during the last 14 days of each experimental period. Treatments had no effect on total DM intake, milk yield, milk constituent output or milk fat content, but milk protein concentrations were lower (P< 0.05) for G than M diets (mean 43.0 and 47.3 g/kg, respectively). Compared with grass silage, milk fat contained higher (P< 0.05) amounts of C12:0, C14:0, trans C18:1and long chain ≥ C20 (n-3) polyunsaturated fatty acids (PUFA) and lower (P< 0.05) levels of C18:0and trans C18:2when maize silage was offered. Increases in the proportion of concentrate in the diet elevated (P< 0.05) C18:2(n-6) and long chain ≥ C20 (n-3) PUFA content, but reduced (P< 0.05) the amount of C18:3(n-3). Concentrations oftrans-11 C18:1in milk were independent of forage type, but tended (P< 0.10) to be lower for high concentrate diets (mean 7.2 and 4.0 g/100 g fatty acids, for L and H respectively). Concentrations oftrans-10 C18:1were higher (P< 0.05) in milk from maize compared with grass silage (mean 10.3 and 4.1 g/100 g fatty acids, respectively) and increased in response to high levels of concentrates in the diet (mean 4.1 and 10.3 g/100 g fatty acids, for L and H, respectively). Forage type had no effect (P> 0.05) on total milk conjugated linoleic acid (CLA) (2.7 and 2.8 g/100 g fatty acids, for M and G, respectively) orcis-9,trans-11 CLA content (2.2 and 2.4 g/100 g fatty acids). Feeding high concentrate diets tended (P< 0.10) to decrease total CLA (3.3 and 2.2 g/100 g fatty acids, for L and H, respectively) andcis-9,trans-11 CLA (2.9 and 1.7 g/100 g fatty acids) concentrations and increase milktrans-9,cis-11 CLA andtrans-10,cis-12 CLA content. In conclusion, the basal diet is an important determinant of milk fatty acid composition when a supplement of fish oil and sunflower oil is given.


2006 ◽  
Vol 89 (2) ◽  
pp. 714-732 ◽  
Author(s):  
K.J. Shingfield ◽  
C.K. Reynolds ◽  
G. Hervás ◽  
J.M. Griinari ◽  
A.S. Grandison ◽  
...  

2011 ◽  
Vol 94 (9) ◽  
pp. 4413-4430 ◽  
Author(s):  
A. Halmemies-Beauchet-Filleau ◽  
T. Kokkonen ◽  
A.-M. Lampi ◽  
V. Toivonen ◽  
K.J. Shingfield ◽  
...  

2012 ◽  
Vol 55 (6) ◽  
pp. 540-551 ◽  
Author(s):  
R. Kupczyński ◽  
M. Kuczaj ◽  
M. Szołtysik ◽  
T. Stefaniak

Abstract. The aim of the study was to determine an influence of diet additives in a form of protected palm oil, protected fish oil or unprotected fish oil with glycerol in Polish Holstein-Friesian cows on milk fatty acid composition, metabolism, milk yield and milk composition. Milk production, milk fat, and milk protein did not differ statistically between the groups. A significant increase (P<0.01) in glucose level in blood was noted after application of unprotected fish oil with glycerol. The lowest concentration of β-hydroxybutyrate and non-esterified fatty acids, with the highest cholesterol and triacylglycerol concentration was observed in protected fish oil. An increase in the content of long-chain acids was observed in milk fat of cows receiving protected fish oil when compared to the group receiving palm oil and unprotected fish oil with glycerol. Concentration of trans-vaccenic acid (TVA) was higher (P<0.01) in protected fish oil and unprotected fish oil with glycerol when compared to palm oil group. These changes were corresponded by concentration of cis-9, trans-11 conjugated linoleic acid (CLA) (1.71, 1.68 and 0.61 g/100 g of total fatty acids, respectively). Irrespectively of the form of fish oil administration, an increase in milk eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) content was noted. The present experiment provides evidence that milk fatty acids can be manipulated via dietary fish oil or unprotected fish oil and glycerol application.


2008 ◽  
Vol 101 (2) ◽  
pp. 213-224 ◽  
Author(s):  
Laurence Bernard ◽  
Kevin J. Shingfield ◽  
Jacques Rouel ◽  
Anne Ferlay ◽  
Yves Chilliard

Based on the potential benefits to long-term human health there is interest in developing sustainable nutritional strategies for reducing saturated and increasing specific unsaturated fatty acids in ruminant milk. The impact of plant oil supplements to diets containing different forages on caprine milk fatty acid composition was examined in two experiments using twenty-seven Alpine goats in replicated 3 × 3 Latin squares with 28 d experimental periods. Treatments comprised of no oil (control) or 130 g/d of sunflower-seed oil (SO) or linseed oil (LO) supplements added to diets based on grass hay (H; experiment 1) or maize silage (M; experiment 2). Milk fat content was enhanced (P < 0·01) on HSO, HLO and MLO compared with the corresponding H or M control diets, resulting in 17, 15 and 14 % increases in milk fat secretion, respectively. For both experiments, plant oils decreased (P < 0·05) milk 10 : 0–16 : 0 and odd- and branched-chain fatty acid content and increased 18 : 0,trans-Δ6–9,11–14,16-18 : 1 (and their corresponding Δ-9 desaturase products),trans-7,trans-9-conjugated linoleic acid (CLA),trans-9,trans-11-CLA andtrans-8,cis-10-CLA concentrations. Alterations in the distribution ofcis-18 : 1,trans-18 : 1, -18 : 2 and CLA isomers in milk fat were related to plant oil composition and forage in the diet. In conclusion, plant oils represent an effective strategy for altering the fatty acid composition of caprine milk, with evidence that the basal diet is an important determinant of ruminal unsaturated fatty acid metabolism in the goat.


2006 ◽  
Vol 82 (4) ◽  
pp. 479-492 ◽  
Author(s):  
A. Roy ◽  
A. Ferlay ◽  
K. J. Shingfield ◽  
Y. Chilliard

AbstractIt is well established that plant oils reduce milk saturated fatty acid content and enhance concentrations of conjugated linoleic acid (CLA) and trans C18:1in milk fat, but there is increasing evidence to suggest that milk fat CLA responses are often transient and decline over time. It is probable that time dependent adaptations in ruminal biohydrogenation and changes in milk fatty acid composition to lipid supplements are, at least in part, related to the composition of the basal diet. To test this hypothesis, 18 Holstein cows were used in a continuous randomized block design to examine changes in milk fatty acid composition over time in response to plant oils included in diets of variable composition. Cows were randomly allocated to one of three basal diets containing (g/kg dry matter (DM)) maize silage (267) and concentrates (733) (diet C); maize silage (332), grass hay (148) and concentrates (520) (diet M), or grass hay (642) and concentrates (358) (diet H). Basal rations were offered for 21 days, after which diets were supplemented with 50 g sunflower per kg DM (diets C-S and M-S) or 50 g linseed oil per kg DM (diet H-L). Oils were included in all rations incrementally over a five day period (days 0–4), and responses to 50 g/kg DM of the respective oils were evaluated for 17 days (days 4 to 20). Milk fatty acid composition was intensively monitored from days −2 to 20. In contrast to the H-L diet, both C-S and M-S treatments decreased (P<0·05) DM intake, milk fat content and yield, while the C-S diet also reduced (P<0·05) milk yield. Milk fatcis-9,trans-11 CLA andtrans-11 C18:1contents were enhanced on the C-S and M-S treatments but the increases were transient reaching the highest concentrations between days 4 and 6 (cis-9,trans-11 CLA: 1·94 and 2·18 g per 100 g total fatty acids;trans-11 C18:1: 4·88 and 6·23 g per 100 g total fatty acids, respectively) but declined thereafter. In marked contrast, concentrations ofcis-9,trans-11 CLA andtrans-11 C18:1in milk from the H-L diet increased gradually over time, responses that were maintained until the end of the experiment (2·89 and 7·49 g per 100 g total fatty acids, respectively).Decreases in milk fatcis-9,trans-11 CLA andtrans-11 C18:1after day 6 on the M-S and C-S diets were associated with concomitant increases in milk fattrans-10 C18:1content reaching 7·22 and 18·62 g per 100 g total fatty acids on day 18, respectively, whereas concentrations oftrans-10 C18:1in milk on the H-L diet remained low throughout the experiment (0·70 g per 100 g total fatty acids on day 18). Furthermore, milk fattrans-11,cis-13 CLA,trans-11,trans-13 CLA andtrans-12,trans-14 CLA contents were all enhanced on the H-L diet, while the M-S and C-S diets increasedtrans-8,cis-10 CLA,trans-10,cis-12 CLA andtrans-9,cis-11 CLA concentrations. Across all diets, decreases in milk fat content were associated with increases in milktrans-10 C18:1,trans-10,cis-12 andtrans-9,cis-11 CLA concentrations (r2=0·93, 0·88 and 0·89, respectively). In conclusion, the relative abundance oftransC18:1and CLA isomers in milk fat were dependent on the composition of the basal diet, type of plant oil and duration of lipid supplementation, highlighting the challenges in developing nutritional strategies for the production of milk highly enriched with CLA over an extended period of time.


2015 ◽  
Vol 98 (8) ◽  
pp. 5653-5671 ◽  
Author(s):  
P. Kairenius ◽  
A. Ärölä ◽  
H. Leskinen ◽  
V. Toivonen ◽  
S. Ahvenjärvi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document