caprine milk
Recently Published Documents


TOTAL DOCUMENTS

165
(FIVE YEARS 31)

H-INDEX

25
(FIVE YEARS 4)

2022 ◽  
Author(s):  
Wei-Chien Weng ◽  
Hun-En Liao ◽  
Shih-Pei Huang ◽  
Shang-Ting Tsai ◽  
Hsu-Chen Hsu ◽  
...  

Free oligosaccharides are abundant macronutrients in milk and involved in prebiotic functions and antiadhesive binding of pathogenic bacteria to colonocytes. Despite the importance of these oligosaccharides, structural determination of oligosaccharides is challenging, and milk oligosaccharide biosynthetic pathways remain unclear. Oligosaccharide structures are conventionally determined using a combination of chemical reactions, exoglycosidase digestion, nuclear magnetic resonance spectroscopy, and mass spectrometry. Most reported free oligosaccharides are highly abundant and have lactose at the reducing end, and current oligosaccharide biosynthetic pathways in human milk are proposed based on these oligosaccharides. In this study, a new mass spectrometry technique, which can identify linkages, anomericities, and stereoisomers, was applied to determine the structures of free oligosaccharides in human, bovine, and caprine milk. Oligosaccharides that do not follow the current biosynthetic pathways and are not synthesized by any discovered enzymes were found, indicating the existence of undiscovered biosynthetic pathways and enzymes. New biosynthetic pathways were proposed.


Dairy ◽  
2021 ◽  
Vol 2 (4) ◽  
pp. 695-715
Author(s):  
Margaret E. Byrne ◽  
James A. O’Mahony ◽  
Tom F. O’Callaghan

Breastmilk is the optimal source of nutrition for infants. However, in circumstances where breastfeeding is not possible or feasible, infant formula provides an essential alternative to fulfil the nutritional requirements of the developing infant. Traditionally, the manufacture of infant formula has involved utilisation of bovine milk as a base ingredient, formulated with other nutrients and bioactive ingredients to closely match the composition of human breastmilk. While it is the most widely available type of formula on the market, bovine-based infant formula is not suitable for all infants, and therefore alternatives such as those based on caprine milk, soy and rice protein are becoming increasingly available. This review provides a detailed examination of the composition of infant formula prepared from bovine milk, caprine milk, soy, and rice protein sources. Available literature on nutrient bio-accessibility and aspects of protein functionality relevant to infant formula is discussed.


2021 ◽  
Vol 11 (13) ◽  
pp. 5982
Author(s):  
Katarzyna Kiełczewska ◽  
Aneta Dąbrowska ◽  
Agnieszka Jankowska ◽  
Maria Wachowska ◽  
Jarosław Kowalik

Background: Proteins are susceptible to HP-treatment and there is a need to determine the applicability of HP-treatment in dairy production. The aim of this study was to determine the effect of HP-treatment at 200–500 MPa (tconst. = 10 min; Tconst. = 20 °C) and skimming of HP-treated milk on the content of nitrogen compounds and protein composition of caprine milk. Methods: The content of nitrogen (total, non-casein, non-protein) was determined using the Kjeldahl method. Casein fractions and whey proteins were separated using SDS-PAGE electrophoresis. Color parameters were measured in the CIELAB color space. Results: HP-treatment decreased (p < 0.05) the content of non-casein nitrogen and soluble whey proteins. Skimming decreased the content of nitrogen compounds, and the noted decrease was more pronounced in HP-treated milk. Pressure and skimming had no influence on the proportions of α-, β-, κ-casein, β-lactoglobulin and α-lactalbumin. Total color difference (ΔE) increased with a rise in pressure, particularly in skim milk. Conclusion: HP-treatment led to a loss of protein solubility at pH 4.6 in caprine milk. In HP-treated milk, skimming did not induce changes in protein composition, despite a decrease in the content of nitrogen compounds after the separation of the cream layer. Higher values of ΔE in skim milk than in whole milk point to changes in colloidal phase components.


Author(s):  
Fatchiyah Fatchiyah ◽  
Bambang Setiawan ◽  
Tomohiko Sasase ◽  
Takeshi Ohta

We investigated the potential anti-glycation and anti-osteoporosis properties of Caprine milk CSN1S2 protein on the serum AGEs and sRAGE level, osteogenic factors expressions, femoral bone mesostructure, histomorphometry, and hydroxyapatite crystals changes in T2DM rats. Varying doses of Caprine milk CSN1S2 protein (0, 375, 750, and 1500mg/kg BW) were used to treat the control and T2DM rats. We measured AGEs and sRAGE level; RUNX2, OSX, BMP2, and Caspase-3 expressions in rats using ELISA and immunohistochemistry, respectively. The mesostructure and histomorphometry of femoral bone was analyzed using SEM Microscope and BoneJ software, then hydroxyapatite crystal size was determined using SEM-XRD. T2DM rats showed a high level of AGEs and a low level of sRAGE, the RUNX2, OSX, & BMP2 expression was down regulated, BV, BV.TV, Tb.Th, Tb.Sp, increased and SMI levels declined, respectively. Vice versa, after administration of the CSN1S2 protein to T2DM rats, improvement in all levels of molecular and cellular markers was achieved. In the CSN1S2 highest dose, AGEs level declined and sRAGE level elevated in T2DM rats. The 375 and 750 mg/kgBW of CSN1S2 protein was able to upregulate the RUNX2, OSX, and BMP2 expression in T2DM rats, thus improving the normalization of osteoclasts and osteoblasts number. The whole dose of CSN1S2 triggered the thickening of trabecular bone wall, granule formation, and normalized the trabecular thickness (Tb.Th) parameter of T2DM rats. The hydroxyapatite crystal size was increased in the highest dose of CSN1S2-treated T2DM rats. This study indicated that CSN1S2 protein had a protective effect against osteoporosis in the T2DM rat bones by means of glycation pathway inhibition, bone histomorphometry and mesostructure improvement via bone morphometric protein signaling.


Dairy ◽  
2021 ◽  
Vol 2 (2) ◽  
pp. 191-201
Author(s):  
Young W. Park ◽  
George F. W. Haenlein

A new type of cow’s milk, called A2 milk, has appeared in the dairy aisles of supermarkets in recent years. Cows’ milk generally contains two major types of beta-casein as A1 and A2 types, although there are 13 genetic variants of β-casein: A1, A2, A3, A4, B, C, D, E, F, H1, H2, I and G. Studies have shown that A1 β-casein may be harmful, and A2 β-casein is a safer choice for human health especially in infant nutrition and health. The A2 cow milk is reportedly easier to digest and better absorb than A1 or other types of milk. The structure of A2 cow’s milk protein is more comparable to human breast milk, as well as milk from goats, sheep and buffalo. Digestion of A1 type milk produces a peptide called β-casomorphin-7 (BCM-7), which is implicated with adverse gastrointestinal effects on milk consumption. In addition, bovine milk contains predominantly αs1-casein and low levels or even absent in αs2-casein, whereby caprine milk has been recommended as an ideal substitute for patients suffering from allergies against cow milk protein or other food sources. Since goat milk contains relatively low levels of αs1-casein or negligible its content, and αs2-casein levels are high in the milk of most dairy goat breeds, it is logical to assume that children with a high milk sensitivity to αs1-casein should tolerate goat milk well. Cow milk protein allergy (CMPA) is considered a common milk digestive and metabolic disorder or allergic disease with various levels of prevalence from 2.5% in children during the first 3 years of life to 12–30% in infants less than 3 months old, and it can go up to even as high as 20% in some countries. CMPA is an IgE-mediated allergy where the body starts to produce IgE antibodies against certain protein (allergens) such as A1 milk and αs1-casein in bovine milk. Studies have shown that ingestion of β-casein A1 milk can cause ischemic heart disease, type-1 diabetes, arteriosclerosis, sudden infant death syndrome, autism, schizophrenia, etc. The knowledge of bovine A2 milk and caprine αs2-casein has been utilized to rescue CMPA patients and other potential disease problems. This knowledge has been genetically applied to milk production in cows or goats or even whole herds of the two species. This practice has happened in California and Ohio, as well as in New Zealand, where this A2 cow milk has been now advanced commercially. In the USA, there have been even promotions of bulls, whose daughters have been tested homozygous for the A2 β-casein protein.


Sign in / Sign up

Export Citation Format

Share Document