Oxygen tension during in vitro culture of bovine embryos: Effect in production and expression of genes related to oxidative stress

2008 ◽  
Vol 104 (2-4) ◽  
pp. 132-142 ◽  
Author(s):  
Geórgia Assis Corrêa ◽  
Rodolfo Rumpf ◽  
Tatiane Carmo Duarte Mundim ◽  
Mauricio Machaim Franco ◽  
Margot Alves Nunes Dode
2011 ◽  
Vol 40 (1) ◽  
pp. 124-128
Author(s):  
Sabine Wohlres-Viana ◽  
Mariana Cortes Boite ◽  
João Henrique Moreira Viana ◽  
Marco Antonio Machado ◽  
Luiz Sérgio de Almeida Camargo

The objectives of this work were to identify and to evaluate possible differences on gene expression of aquaporins and Na/K-ATPases transcripts between embryos in vivo and in vitro produced. For each group, 15 blastocysts distributed in three pools were used for RNA extraction followed by amplification and reverse transcription. The resulting cDNAs were submitted to Real-Time PCR, using the GAPDH gene as endogenous control. It was not possible to identify AQP1 transcripts. Relative expression of AQP3 (1.33 ± 0.78) and AQP11 (2.00 ± 1.42) were not different in blastocysts in vitro and in vivo produced. Na/K-ATPase α1 gene (2.25 ± 1.07) was overregulated whereas Na/K-ATPase β2 transcripts 0.40 ± 0.30) did not differ among blastocysts produced in vitro from those produced in vivo. Transcripts for gene AQP1 are not present in bovine blastocysts. In vitro culture system does not alter expression of genes AQP3, AQP11 and Na/K-ATPase β2 genes, however, it affects expression of Na/K-ATPase α1.


Reproduction ◽  
2006 ◽  
Vol 131 (4) ◽  
pp. 651-660 ◽  
Author(s):  
D Corcoran ◽  
T Fair ◽  
S Park ◽  
D Rizos ◽  
O V Patel ◽  
...  

In vivo-derived bovine embryos are of higher quality than those derivedin vitro. Many of the differences in quality can be related to culture environment-induced changes in mRNA abundance. The aim of this study was to identify a range of mRNA transcripts that are differentially expressed between bovine blastocysts derived fromin vitroversusin vivoculture. Microarray (BOTL5) comparison betweenin vivo- andin vitro-cultured bovine blastocysts identified 384 genes and expressed sequence tags (ESTs) that were differentially expressed; 85% of these were down-regulated inin vitrocultured blastocysts, showing a much reduced overall level of mRNA expression inin vitro- compared within vivo-cultured blastocysts. Relative expression of 16 out of 23 (70%) differentially expressed genes (according toPvalue) were verified in new pools ofin vivo- andin vitro-cultured blastocysts, using quantitative real-time PCR. Most (10 out of 16) are involved in transcription and translation events, suggesting that the reason whyin vitro-derived embryos are of inferior quality compared within vivo-derived embryos is due to a deficiency of the machinery associated with transcription and translation.


2015 ◽  
Vol 2015 ◽  
pp. 1-9 ◽  
Author(s):  
Sergio Montes ◽  
Daniel Juárez-Rebollar ◽  
Concepción Nava-Ruíz ◽  
Aurora Sánchez-García ◽  
Yesica Heras-Romero ◽  
...  

In developing animals, Cadmium (Cd) induces toxicity to many organs including brain. Reactive oxygen species (ROS) are often implicated in Cd-inducedtoxicity and it has been clearly demonstrated that oxidative stress interferes with the expression of genes as well as transcriptional factors such as Nrf2-dependent Antioxidant Response Element (Nrf2-ARE). Cd-generated oxidative stress and elevated Nrf2 activity have been reportedin vitroandin situcells. In this study we evaluated the morphological changes and the expression pattern of Nrf2 and correlated them with the Cd concentrations in different ages of developing rats in heart, lung, kidney, liver, and brain. The Cd content in different organs of rats treated with the metal was increased in all ages assayed. Comparatively, lower Cd brain levels were found in rats intoxicated at the age of 12 days, then pups treated at 5, 10, or 15 days old, at the same metal dose. No evident changes, as a consequence of cadmium exposure, were evident in the morphological analysis in any of the ages assayed. However, Nrf2-ARE immunoreactivity was observed in 15-day-old rats exposed to Cd. Our results support that fully developed blood-brain barrier is an important protector against Cd entrance to brain and that Nrf2 increased expression is a part of protective mechanism against cadmium-induced toxicity.


2003 ◽  
Vol 59 (7) ◽  
pp. 1585-1596 ◽  
Author(s):  
Y.Q Yuan ◽  
A Van Soom ◽  
F.O.J Coopman ◽  
K Mintiens ◽  
M.L Boerjan ◽  
...  

2010 ◽  
Vol 22 (1) ◽  
pp. 307
Author(s):  
M. M. Souza ◽  
N. Z. Saraiva ◽  
C. S. Oliveira ◽  
T. A. D. Tetzner-Nanzeri ◽  
R. Vantini ◽  
...  

The use of fetal bovine serum (FBS) as protein supplementation in IVP of bovine embryos has presented difficulties because it can introduce a number of pathogenic components in culture systems, can be related to the birth of calf with abnormal growth and development, and precludes the establishment of the actual nutritional needs of the embryo, because it contains an unlimited variety of substances. This study evaluated the replacement of the FBS in the medium of in vitro culture (IVC) of bovine embryos, using the knockout serum replacer (KSR) as protein supplementation and culture medium conditioned with stem cells. Therefore, bovine oocytes from ovaries of slaughterhouse were selected and matured in vitro in TCM-199 medium supplemented with 10% FBS (Crypion), 1.0 μg mL-1 FSH (Pluset®, Calier, Barcelona, Spain), 50 μg mL-1 hCG (Profasi®, Serono, Geneva, Switzerland), 1.0 μg mL-1 estradiol (Sigma E-2758, Sigma Chemical, St. Louis, MO, USA), 0.2 mM sodium pyruvate, and 83.4 μg mL-1 amikacin for 24 h. After that, 1144 oocytes were fertilized in IVF-TALP medium containing 6 mg mL-1 of BSA. After 18 to 22 h, the zygotes were cultured in SOF + 5% FBS (group 2); SOF + 5% KSR (group 3); SOF (5% FBS) + 10% SOF (5% FBS) conditioned by stem cells (group 4); or SOF (5% KSR) + 10% SOF (5% KSR) conditioned by stem cells (group 5), in an atmosphere of 5% O2 at 38.5°C for 8 days. A control group outside the controlled atmosphere was added, supplemented with 5% FBS (group 1). The SOF medium supplemented with 5% FBS or KSR was conditioned by stem cells and added to SOF medium for the culture of embryo at a concentration of 10%. The rates of cleavage and production of blastocysts were assessed 48 hours and 7 days after IVF, respectively, and analyzed by chi-square test, with a significance level of 5% in the statistical program Minitab® (release 14.1, Minitab, State College, PA, USA). On the eighth day, the TUNEL test for determination of the percentage of apoptosis and the differential staining technique for determination of inner cell mass (ICM) and trophoblast (TF) were performed. The results were submitted to ANOVA, followed by comparing the means by Tukey’s test using the program GraphPad Prism (GraphPad, San Diego, CA, USA). The treatments did not differ in the production of embryos, being similar to the control group: G1 = 31.75% (74/233), G2 = 35.26% (79/224), G3 = 32.70% (74/226), G4 = 28.76% (63/219), and G5 = 26.85% (65/242). With regard to the assessment of embryonic quality, the treatments showed similar results to the control groups. No differences were observed among groups both in color and ICM/TF ratio (G1 = 0.60, G2 = 0.62, G3 =0.65, G4 = 0.60, and G5 = 0.60). Furthermore, the TUNEL showed no significant difference in the percentage of apoptosis among groups (G1 = 7.10%, G2 = 3.76%, G3 = 5.58%, G4 = 4.50%, and G5 = 4.11%). The data obtained so far indicate that it is possible to produce embryos in vitro by replacing the FBS in the culture, achieving results similar to those obtained with serum. Financial support: FAPESP 2007/58506-6.


2014 ◽  
Vol 26 (1) ◽  
pp. 155
Author(s):  
L. Baldoceda ◽  
C. Vigneault ◽  
P. Blondin ◽  
C. Robert

Mitochondria play an important role during early mammalian embryo development through their diverse cellular functions, in particular creating balance between production of ATP by electron transport chain and oxidative stress. Embryonic mitochondria are inherited maternally and independently of the nuclear genome. They show limited activity during the early developmental stages before embryonic genome activation. It has been shown that in vitro culture (IVC) has an adverse effect on mitochondrial function in embryos. So far several attempts have been performed to improve and rescue the impaired mitochondria. It has been shown that vitamin K2 (a membrane-bound electron carrier, similar to ubiquinone) was used to rescue mitochondrial dysfunction and resulted in more efficient ATP production in eukaryotic cells (Vos et al. 2012 Science 336, 1306–1310). Therefore, the aim of the present study was to investigate the effects of supplementation of vitamin K2 on mitochondrial activity and blastocyst rate. Cumulus–oocytes complexes (n = 687) recovered from slaughtered animals, were matured and fertilized in vitro according to our standard procedures. After fertilization, zygotes were cultured in SOF media supplemented with 10 mg mL–1 BSA. At 96 h post-fertilization, vitamin K2 was added to the culture media (n = 448 oocytes). On Day 7, treatment embryos were compared with untreated controls (n = 239 oocytes). In vitro culture was carried out at 38.5°C under 5% CO2, 7% O2, and 88% N2. Differences among groups in blastocyst yield were analysed by ANOVA. Mitochondrial activity data was analysed by unpaired 2-tailed t-tests. Results show that the vitamin K2-treated group had a significantly (P < 0.05) higher blastocyst rate (+8.6%), expanded blastocyst rate (+7.8%), as well as better morphological quality compared with the control group. Furthermore, to evaluate mitochondria activity, pools of embryos of each treatment were labelled with a specific dye for active mitochondria (Mitotracker Red). A significantly higher intensity of Mitotracker Red (P < 0.05) was observed in the vitamin K2 treatment versus control group, as measured by fluorescent microscopy. In conclusion, for the first time, our data prove that supplementation of vitamin K2 during IVC of bovine embryos increases blastocyst rates and embryo quality. Future studies will focus on gene expression to identify targets implicated in impaired mitochondrial activity in in vitro bovine embryo production.


2011 ◽  
Vol 23 (1) ◽  
pp. 169
Author(s):  
J. T. Kang ◽  
M. Atikuzzaman ◽  
D. K. Kwon ◽  
S. J. Park ◽  
S. J. Kim ◽  
...  

The in vitro developmental abilities of porcine oocytes are generally increasing steadily at a similar ratio to those of in vivo embryos. However, it has been suggested that the in vitro culture system for the development of porcine embryos is not optimal. In this study, we investigated the effect of 2 oxygen concentrations (5 and 20%) on porcine embryo development during in vitro maturation and in vitro culture and analyzed differences in gene expression of resulting blastocysts. Oocytes were recovered by aspiration of slaughterhouse ovaries and then matured in tissue culture medium (TCM) 199 supplemented with 10% porcine follicular fluid (pFF), epidermal growth factor (EGF), insulin, pyruvate, cystine, and gonadotropin. Matured oocytes were then activated parthenogenetically, cultured in PZM-3 media for 7 days. In vitro maturation (M group) of oocytes was carried out under two oxygen concentration (5 and 20%) in terms of nuclear maturation (polar body extrusion; Exp. 1). The developmental differences between 5% oxygen culture group and 20% oxygen culture group during in vitro culture (C group) of embryos after parthenogenetic activation was investigated in terms of first cleavage and blastocyst formation (Exp. 2). Relative mRNA abundance of multiple genes in blastocysts was analyzed for transcript abundance of genes related with metabolism (GLUT1, LDHA), oxidative response (MnSOD, GPX1), apoptosis (BAX, Bcl2), and developmental competence (CCNB1, IGF2R; Exp. 3). The results show there were no significant differences in maturation rate between 2 oxygen concentrations during in vitro maturation (83 v. 86%). It was thought that cumulus cells surrounding oocytes might have attenuated oxidative stress, but number of resulting blastocysts were (P < 0.05) increased in 5% IVC group when compared with 20% IVC group (18.67 v. 14.09%, respectively). Moreover, the M20C5 group (23.01%) had a beneficial effect on in vitro culture compared with M5C5 (14.32%), M5C20 (10.30%), and M20C20 (17.88%) groups. Total cell numbers were not significantly different among groups. According to mRNA abundance data of multiple genes, each group altered the expression of genes in various patterns. Therefore, it could be concluded that high oxygen tension during in vitro maturation and low oxygen tension during in vitro culture might alter the expression of multiple genes related to oocyte competence and improve (P < 0.05) embryo development, but not blastocyst quality. This study was supported by MKE (#2009-67-10033839, #2009-67-10033805), NRF (#M10625030005-508-10N25), BK21 for Veterinary Science, IPET (#109023-05-1-CG000), and Hanhwa L&C.


2012 ◽  
Vol 24 (1) ◽  
pp. 232
Author(s):  
L. N. Moro ◽  
G. Vichera ◽  
D. Salamone

Transgenic animals have important applications in agriculture and human medicine; nevertheless the available techniques still remain inefficient and technically difficult. We have recently developed a novel method to transfect bovine embryos that consists of intracytoplasmic injection of exogenous DNA–liposome complexes (eDNA-LC) in IVF zygotes. This study was designed to evaluate the quality and viability of IVF bovine embryos, after intracytoplasmic injection of pCX-EGFP–liposome complexes (EGFP-LC) or pBCKIP2.8-liposome complexes (plasmid that codifies the human insulin gene, HI-LC). First, we evaluated embryo development and enhanced green fluorescent protein (EGFP) expression of IVF embryos injected with both plasmids separately. This treatment was analysed by Fisher's Exact test (P ≤ 0.05). Cleavage rates for EGFP-LC, HI-LC and IVF embryos injected with liposomes alone (IVF-L) and IVF control (IVF-C) were 62% (63/102), 67% (67/100), 66% (67/101) and 79% (98/124); blastocysts rates were 17% (17/102), 21% (21/100), 21% (21/101) and 23% (28/124), respectively. No statistical differences were seen among groups. The percentage of EGFP-positive embryos (EGFP+) after EGFP-LC injection was 42.9% after 3 days of culture and 41.8% at the blastocyst stage. In the second experiment, the blastocysts obtained, EGFP+ or EGFP-negative (EGFP–), were analysed by TUNEL assay at Day 6 (Bd6), 7 (Bd7) and 8 (Bd8) of in vitro culture, in order to evaluate the effect of the transgene and culture length, on DNA fragmentation. This treatment was analysed by the difference of proportions test (P ≤ 0.05) using statistical INFOSTAT software. All EGFP+ blastocysts showed TUNEL positive cells (T+). The percentage of T+ in Bd6, Bd7 and Bd8 were 91, 73.7 and 99.5%, respectively (P ≤ 0.05). EGFP– blastocysts showed lower fragmented nuclei (0, 44.6 and 85%, respectively; P ≤ 0.05). Groups IVF-L and IVF-C were also evaluated. In both groups, there was no evidence of DNA fragmentation in Bd6 and Bd7, but T+ were detected in Bd8 (66.4 and 85.8%, respectively; P ≤ 0.05). In the third experiment, bovine blastocysts obtained from the HI-LC group were individually transferred to recipient cows after 6 (n = 11), 7 (n = 5) and 8 (n = 5) days of culture post-IVF and HI-LC injection. The pregnancies obtained were from Bd6 [18.2% (2/11)] and Bd7 [40% (2/5)], although none of the recipients receiving Bd8 were diagnosed pregnant. Two pregnancies developed to term, one derived from Bd6 and the other from Bd7. Analysis by PCR determined that none of the born cows were transgenic. In summary, IVF bovine embryos could be easily transfected after the injection of eDNA-LC and the technique did not affect offspring viability. The results indicate that extended time in in vitro culture increases the percentage of fragmented nuclei in blastocysts. Moreover, this parameter increases in blastocysts with transgene expression compared with those without expression. Finally, more transfers are required in order to obtain the real efficiency of this new technique and to overcome the drawbacks generated by in vitro culture length and transgene expression.


Sign in / Sign up

Export Citation Format

Share Document